电池是当前通往碳中性世界的路线图中必不可少的难题。随着飙升的生产,电池本身意外地成为社会的可持续性问题。因此,越来越多的注意力放在电池的生命周期中,需要进行第二次使用寿命和电池回收利用,依靠对电池状态的监视以及通过传感器对退休电池进行分类。解码基本物理/化学过程的电池传感器已准备好最大程度地提高电池的质量,可靠性,寿命和安全性,并最大程度地减少环境足迹。光纤传感器由于其微型尺寸,绝缘性质,电磁免疫力和多功能灵敏度而脱颖而出。从这个角度来看,我们讨论了对电池进行商业化智能感测的希望和挑战,并突出了光纤传感器如何与范式转移协同作用,包括细胞到包装和底盘技术。关键字:电池;聪明的感应;光纤传感器;传感器植入;智能电池
对称信息完整测量 (SIC) 是希尔伯特空间中优雅、著名且广泛使用的离散结构。我们引入了一个由多个 SIC 复合而成的更复杂的离散结构。SIC 复合结构定义为 d 维希尔伯特空间中的 d 3 个向量的集合,可以以两种不同的方式划分:划分为 d 个 SIC 和 d 2 个正交基。虽然当 d > 2 时,它们的存在似乎不太可能,但我们意外地发现了 d = 4 的明确构造。值得注意的是,这种 SIC 复合结构与相互无偏基具有密切的关系,正如通过量子态鉴别所揭示的那样。除了基本考虑之外,我们利用这些奇特的属性来构建量子密钥分发协议,并分析其在一般窃听攻击下的安全性。我们表明,SIC 复合结构能够在存在足够大的错误的情况下生成安全密钥,从而阻止六态协议的推广成功。
摘要:一些物理理论预测,宇宙中几乎所有的大脑都是玻尔兹曼的大脑,即短暂的无形大脑,由于热力学或量子波动而意外地组装。物理学家和哲学家广泛认为这种扩散是不可接受的,因此将其预测作为拒绝这些理论的基础。但是,只有在某些哲学假设的情况下,该预测的推定不可接受的后果才遵循。本文制定了一种策略,以屏蔽物理理论免受Boltzmann Brains的威胁。该策略吸引了关于意识的物理基础的一种现象外部主义的形式。鉴于这种现象外部主义的形式,鲍尔茨曼大脑的增殖证明是良性的。该策略面临心理物理微调问题,但都减轻了宇宙学微调问题,即参加基于物理的解决方案来解决玻尔兹曼大脑问题,并为与时代箭头有关的解释性股息支付了解释性的股息。
由于199日期的大流行,由于各个学校被迫意外地过渡到在线平台,因此远程学习在全国范围内普及。本案例研究探讨了护理人员在加利福尼亚州内陆帝国的公立小学期间,在远程学习期间,护理人员的数字素养自我效能感及其与学术参与的联系。通过半结构化访谈收集数据,该访谈是亲自或通过Zoom进行的开放式问题。这项研究表明,看护人的数字素养自我效能感并未对他们参与学生的远程学习的参与。无论看护人的计算机舒适性及其在远程学习中所面临的挑战如何,参与也有所增加。该研究的结果有助于向地区和学校人员提供有关如何向看护人提供清晰沟通的信息,并为整个远程学习中使用的数字工具提供培训。此外,它还指导地区如何抽出时间计划和创建结构可以使护理人员知道学校制定计划的舒适感。
4 月 30 日牛津大学与阿斯利康合作开发、生产和分发疫苗。5 月 21 日美国政府承诺提供高达 12 亿美元资金,资助阿斯利康开发和生产疫苗。5 月 28 日疫苗的 2/3 期试验在英国开始。一些志愿者意外地接受了预定剂量的一半。6 月 23 日 3 期试验在巴西开始。6 月 28 日 1/2 期研究在南非开始。7 月 30 日《自然》杂志的一篇论文显示,这种疫苗对动物来说是安全的,似乎可以预防肺炎。8 月 18 日疫苗的 3 期试验在美国开始,共有 4 万名参与者。9 月 6 日由于一名英国志愿者疑似出现不良反应,世界各地的人体试验被暂停。阿斯利康和牛津大学均未宣布暂停。9 月 8 日试验暂停的消息公开。9 月 12 日英国临床试验恢复,但美国临床试验仍处于暂停状态。
摘要:本文深入研究了多智能体环境中复杂的量子游戏世界,提出了一个模型,其中智能体利用基于梯度的策略来优化局部奖励。引入了一种学习模型,重点关注智能体在各种游戏中的学习效率以及量子电路噪声对算法性能的影响。研究揭示了量子电路噪声与算法性能之间的非平凡关系。虽然量子噪声的增加通常会导致性能下降,但我们表明,在某些特定情况下,低噪声可以意外地提高具有大量智能体的游戏中的性能。这种见解不仅具有理论意义,而且考虑到当代嘈杂的中型量子 (NISQ) 计算机的固有局限性,也可能具有实际意义。本文提出的结果为量子游戏提供了新的视角,并丰富了我们对多智能体学习与量子计算之间相互作用的理解。强调了挑战和机遇,为量子计算、博弈论和强化学习交叉领域的未来研究指明了有希望的方向。
摘要:目前,光伏电池存储系统(PV-Bess)的安装能力正在迅速增加。在传统的控制方法中,PV-BES需要在离网和连接的状态之间切换控制模式。因此,传统控制模式降低了系统的可靠性。此外,如果系统意外地与网格断开或能量电池无法正常工作,则逆变器的直流电压会迅速增加或降低。为解决这两个问题,在本文中提出了联合控制策略。在网格连接的情况下,基于电压控制的VSG策略,该策略通过更改主要频率调制曲线的位置来调节VSG的输出功率。此方法可以确保系统连接到网格后,可以将多余的光伏电源发送到网格,或者可以从网格中吸收功率以充电以充电储能。在离网状态下,该策略使用FPPT技术并将电压组件叠加到电压环上,以快速平衡逆变器的直流电源和交流电源。如果储能无法正常工作,则该策略可以提高系统电源的可靠性。最后,使用Matlab-Simulink构建了PV-BES模型,模拟结果证明了拟议策略的有效性。
Ohlendorf 补充道:“当一名长期员工(比如负责贷款业务 25 年的员工)离职时,很难找到替代者迅速上手。但是,如果系统数据可访问且流程清晰,则可以更快地将新员工安排到岗位上,避免出现‘帕蒂这样做,多萝西那样做’的培训不一致的情况。这可以加快入职速度并提高效率。”这种效率提升还有助于管理容量。Ohlendorf 指出:“通过自动化,一名团队成员可以做更多的事情。如果你意外地需要增加固定成本(比如说 6.5 万美元加上新员工的福利),那就麻烦了。如果技术可以延缓招聘更多员工的需求,那么计算起来就很简单了。”PCB 对此有亲身体验。“我们最初使用 Tesla 来操作和分析数据,速度比我们的核心系统允许的速度要快。现在,Teslar 是我们贷款业务的骨干——处理异常、承保和渠道管理。我不再需要担心有人外出或离开,因为系统会帮我处理一切,”Loving 补充道。手动任务 60%
一项有趣且精心设计的研究研究了对小学生的叙事(言语)和图形(视觉)学习的新经验的影响[5]。研究人员在教育背景下进行学习后提出了一种新颖的经历:学生意外地将学生带到了另一个地方(在学校内部,但通常不是由学生进行的),在那里他们从未经历过以前从未经历过的活动(科学实验或音乐课),由另一位老师指导。他们必须参加活动(持续20分钟),并刺激参加和互动。研究证实了新颖的经验改善了文学或图形活动的记忆。简而言之,为了评估文学记忆,老师向班上的学生读了一个短篇小说(对于某些学生来说,故事与新颖性有关,而其他人则没有);使用与第二天阅读的故事有关的10个问题的列表评估记忆。为了评估Rey-Stosterrieth的复杂数字测试 - 该测试涉及向学生介绍复杂的几何图形,其中有2分钟的学生可以复制图片 - 老师在第二天收集了图纸,学生应该再次绘制图纸(对于某些学生来说,第一天的图表和副本与新颖的新颖性有关,而其他人则与其他人有关)。
在中国人发现碳、硝石和硫磺混合物会爆炸后的几个世纪里,黑火药是唯一已知的炸药。在十二世纪到十九世纪之间,黑火药是火器中使用的唯一推进剂。后来,在 1845 年,德国化学家 Christian Schonbein 正在实验各种物质在硝酸和硫酸混合物中的溶解度。实验材料中有一些棉线。经过长时间的浸泡,棉花显然没有任何变化。失望的 Schonbein 把棉线放到炉子上,然后去吃饭。他走的时候,他的实验室爆炸了。他意外地发现了硝化纤维素,又称硝化棉。Schonbein 的发现鼓励了其他化学家探索硝酸盐炸药的新领域,不久之后,硝化甘油被发现了。这种化学物质本身太不稳定,无法实际使用;但是,当它被硝化纤维素吸收后,人们发现了一种强大的爆炸性明胶(后来称为炸药)。在西班牙-美国战争期间,海军试图将装有炸药的炮弹用作射弹,但事实证明这些射弹几乎没有军事价值。从气动枪发射时,它们爆炸时发出很大的声音,但效果不佳。从那时起,人们设计出了其他更有效的炸药来炸开炸药,炸药几乎完全被限制在工业用途和拆除炸药上。