2 de Mai。 de 2024 - 学习和定义,学习条件学习的理论...发展心理学简介;大脑发育; ... 的神经心理学2 de Mai。de 2024 - 学习和定义,学习条件学习的理论...发展心理学简介;大脑发育; ...
过去的五十年见证了卫星遥感成为在当地,区域和全球空间尺度上测量地球的最有效工具之一。这些基于空间的观测值具有无损特征,可快速监测环境大气,其基础表面和海洋混合层。此外,卫星仪器可以观察到有毒或危险环境,而不会使人员或设备处于危险之中。大规模连续的卫星观测值补充了详细(但稀疏)的现场观测,并为理论建模和数据同化提供了无与伦比的体积和内容的测量。目前有大量非常重要的应用程序依赖于卫星的数据。对大气的观察用于天气预测,监测环境污染,气候变化等。(Wielicki等,1996)。海洋表面的遥感用于监测海岸线动力学,海面温度和盐度,海洋生态系统和碳生物量,海平面变化,海洋杂物和薄壁,水流和浅水区的基础地形的映射等。(Fu等,2019)。从卫星中对土地的遥感极大地有助于探索矿产资源(Zhang等,2017),对浮游和干旱的监测(Jeyaseelan,2004年),土壤水分,土壤水分(Lakshmi,2013; Babaeian et al。 (Lentile等,2006),农业监测(Atzberger,2013年),城市规划(Kadhim等,2016)等。最后,社会科学对全球危机进行调查(例如Covid-19大流行)的努力是从利用各种有针对性可视化来对人类环境进行分类的卫星遥感数据集中受益的,然后将这些观察结果与各种社会经济数据集联系在一起。(Diffenbaugh等,2020)。此外,卫星遥感为收集全球信息(例如1)行星地形等全球信息提供了有效的工具; 2)温度,水蒸气,二氧化碳和其他痕量气体的大气中; 3)表面和大气的矿物质和化学成分,以及4)冰冻层的特性,例如雪,海冰,冰川和融化池,以及5)热球,电离层和磁层的颗粒和电磁特性。对地球的遥感也可以提高艺术的技术状态,这有助于发展深空遥感任务,例如Voyager(Kohlhase和Penzo,1977)和Cassini-Huygens太空研究任务(Matson等人,2002年)。在观测卫星发育的早期阶段,卫星传感器的设计通常是高度针对性的。例如,在1970年代发射了一系列仪器:Landsat和高级高分辨率辐射仪(AVHRR)仪器,针对监视陆地表面和云的监视,总臭氧映射光谱仪(TOMS)仪器(TOMS)仪器,集中于观察总柱ozone和高分辨率的基础辐射仪器(HIGH-RADIARE RADIARE SUSTIRES)仪器(HIR-RADIARE SONDER SUPSERINTY)。这些任务的部署为每个目标主题提供了独特的数据,并由
简介:太空科学技术在知情决策中起着重要作用,从而提高了当今人类生活和社会的质量。 最引人注目 所有国家,无论富人或贫困如何,都意识到太空技术在改善其公民的生活条件方面的重要性。 因此,所有国家都应使用太空技术,并且必须分享公平的收益。 全球卫星数据的可用性使所有国家都能获得福利。 然而,成功的太空技术应用的重要前提是开发基本土著能力,尤其是人力资源。 国际社会中提出了一个共识,即如果有效的同化和适当的太空技术将在发展中国家取得成功,则需要指导努力在太空技术中建立能力。 对此,联合国大会呼吁在驾驶国家的地区一级建立空间科学和技术教育中心。简介:太空科学技术在知情决策中起着重要作用,从而提高了当今人类生活和社会的质量。最引人注目所有国家,无论富人或贫困如何,都意识到太空技术在改善其公民的生活条件方面的重要性。因此,所有国家都应使用太空技术,并且必须分享公平的收益。全球卫星数据的可用性使所有国家都能获得福利。然而,成功的太空技术应用的重要前提是开发基本土著能力,尤其是人力资源。国际社会中提出了一个共识,即如果有效的同化和适当的太空技术将在发展中国家取得成功,则需要指导努力在太空技术中建立能力。对此,联合国大会呼吁在驾驶国家的地区一级建立空间科学和技术教育中心。在联合国的主持下,通过其外部航天事务办公室(UN-OOSA),建立的六个区域中心是亚洲和太平洋(印度),拉丁美洲和加勒比海和加勒比海(巴西和墨西哥),非洲,非洲(摩洛哥和尼日利亚),西亚(约旦)(JORDAN)和国际竞争中心,这些联合会(JORDAN)和国际技术及以下机构(这些中心)通过Un-oosa进行。
Guest Editors Xiang Li, King Abdullah University of Science and Technology (xiangli92@ieee.org) Xiao Xiang Zhu, Technical University of Munich (xiaoxiang.zhu@tum.de) Gui-Song Xia, Wuhan University (guisong.xia@whu.edu.cn) Sherrie Wang, Massachusetts Institute of Technology (sherwang@mit.edu)武汉大学(balz@whu.edu.cn)蒂莫·巴尔兹(Timo Balz),阿卜杜拉国王科学技术大学(Mohamed.elhaseiny@kaust.edu.sa)Mohamed Elhoseiny,远程传感的视觉语言模型(VLMS)。vlms代表了计算机视觉和自然语言处理技术的开创性整合,旨在通过对视觉和文本信息的更细微的理解来增强与RS数据的解释和互动。通过弥合视觉识别和语义理解之间的差距,VLM提供了一个全面的框架,通过实现复杂的语义分析和自然语言描述功能,超越了传统的视觉任务。更重要的是,通过将视觉模型与LLM相结合,VLM可以利用验证的LLMS中的先验知识来解决复杂的推理任务。
我们非常高兴地通知您,国家遥感中心正在庆祝其建成 50 周年。同时,我们还实施了新的太空政策。这使得该国能够发展私人太空生态系统,并在该领域有机会在各个领域使用太空技术来改善生活质量。随着初创企业和微型和小型企业的更广泛参与,这些目标可以实现。
3部计算机科学与IT,安得拉邦中央大学,阿纳塔普尔。 摘要:使用机器学习(ML)算法的遥感中的预测建模已成为解决各种环境和气候挑战的有力方法。 本文探讨了高级ML技术与遥感数据的集成,以增强诸如土地覆盖分类,作物收益预测,气候变化监控和灾难管理等应用程序的预测能力。 我们审查了相关的工作和现有系统,突出显示了Google Earth Engine(GEE),NASA Earth Exchange(NEX)和Sentinel Hub等平台,它们利用云计算来处理大型数据处理和模型部署。 提出的系统结合了数据采集,预处理,特征提取,模型选择和训练以及预测和可视化,以提供准确,及时的预测。 未来的增强功能,包括深度学习集成,实时数据处理,增强的用户界面以及与物联网(IoT)设备的协作,以进一步增强系统的功能。 本文通过强调ML算法在转换遥感应用程序,支持明智的决策并改善地球资源管理方面的潜力来结束。 关键字:预测建模,遥感,机器学习,深度学习,云计算,Google Earth Engine,NASA Earth Exchange,Sentinel Hub,环境监控,数据。 1。 2。 本节回顾了中的关键研究和进步计算机科学与IT,安得拉邦中央大学,阿纳塔普尔。摘要:使用机器学习(ML)算法的遥感中的预测建模已成为解决各种环境和气候挑战的有力方法。本文探讨了高级ML技术与遥感数据的集成,以增强诸如土地覆盖分类,作物收益预测,气候变化监控和灾难管理等应用程序的预测能力。我们审查了相关的工作和现有系统,突出显示了Google Earth Engine(GEE),NASA Earth Exchange(NEX)和Sentinel Hub等平台,它们利用云计算来处理大型数据处理和模型部署。提出的系统结合了数据采集,预处理,特征提取,模型选择和训练以及预测和可视化,以提供准确,及时的预测。未来的增强功能,包括深度学习集成,实时数据处理,增强的用户界面以及与物联网(IoT)设备的协作,以进一步增强系统的功能。本文通过强调ML算法在转换遥感应用程序,支持明智的决策并改善地球资源管理方面的潜力来结束。关键字:预测建模,遥感,机器学习,深度学习,云计算,Google Earth Engine,NASA Earth Exchange,Sentinel Hub,环境监控,数据。1。2。本节回顾了引言遥感是一项关键技术,可以从远处观察和分析地球表面和大气,通常使用卫星或空气传感器。它为广泛的应用提供了必不可少的数据,包括环境监测,农业评估,城市规划,灾难管理和气候变化研究。遥感平台生成的大量数据对分析和解释提出了重大挑战。但是,机器学习的最新进展(ML)提供了强大的工具,可从这些大数据集中提取有意义的模式并进行准确的预测[1,2]。遥感中的预测建模涉及使用历史和当前数据来预测未来的条件和趋势。这种能力对于积极的决策特别有价值,使利益相关者能够预测并应对环境变化,农业需求或即将发生的自然灾害。机器学习算法在处理遥感数据的复杂性和数量方面表现出色,比传统方法更精确,更可靠的预测[3]。本文探讨了机器学习在遥感领域内预测建模中的作用。它审查了与各种预测任务成功整合ML算法的相关工作和现有系统。此外,它提出了一个综合系统,该系统利用高级ML技术和云计算来增强预测性建模功能。通过各种案例研究证明了所提出的系统的有效性,并讨论了潜在的未来增强功能,以概述该技术的前进道路。通过将机器学习与遥感数据集成在一起,我们可以显着提高监视和预测环境和气候状况的能力,从而为更好的资源管理和灾难准备。这种整合不仅可以提高科学理解,而且还为全球挑战提供了实用的解决方案,强调了该领域持续研发的重要性[4,5]。相关的工作,机器学习(ML)在遥感中的应用一直是广泛研究的重点,这反映了对ML增强预测建模能力的潜力的越来越多。
传感策略正在发展越来越多地集中在超低检测阈值和高度选择性设备上。这些性能可以通过纳米技术来启用,这要归功于印度定义,自上而下的结构[1-3]或化学/生化获得的,即自下而上的构造[4-6]。可以用基于石墨烯的纳米结构来表示自上而下和自下而上的方法之间的一种桥梁。石墨烯是一种二维材料,该材料由六边形晶格结构中的单层碳原子组成[7]。Andre Geim和Konstantin Novoselov于2004年隔离并描述了石墨烯,这一成就于2010年获得了诺贝尔物理奖[8]。 使用关键字“石墨烯”在2023年11月进行的一项科学数据库研究产生了203,000多篇论文,其中包括大约10,000篇评论论文。 材料的特殊特性,已在不可数的出色评论中进行了详细描述(例如,参见[9-11])允许其在几乎无限的应用中使用,涵盖了当今人类活动的不同技术和科学相关领域。Andre Geim和Konstantin Novoselov于2004年隔离并描述了石墨烯,这一成就于2010年获得了诺贝尔物理奖[8]。使用关键字“石墨烯”在2023年11月进行的一项科学数据库研究产生了203,000多篇论文,其中包括大约10,000篇评论论文。材料的特殊特性,已在不可数的出色评论中进行了详细描述(例如,参见[9-11])允许其在几乎无限的应用中使用,涵盖了当今人类活动的不同技术和科学相关领域。在一些最成功和/或研究的中,有可能提到一般的电子和光电子,对于这些电子和光电子,石墨烯的存在及其衍生物可以改善设备的电子传输[12-15];与能量相关的应用[16,17],其中再次,石墨烯的电子传输能力有助于改善例如电池和电容器的整体特性;催化[18,19],该领域利用了石墨烯/石墨烯衍生物所实现的超高表面积及其增强的电子传输特性,以提高化学反应的整体产量;药物[20-23],其中石墨烯衍生物(特别是石墨烯氧化物)与生物分子相互作用的能力用于实施药物递送,提供用于热破坏癌细胞的选择性电气吸收,用于成像以及许多其他生物医学目的[24,25];复合材料的机械增强和/或复合材料的功能修饰,其中通常通过创建能够承受非常的材料来利用石墨烯衍生物的特殊机械电阻。中,有可能提到一般的电子和光电子,对于这些电子和光电子,石墨烯的存在及其衍生物可以改善设备的电子传输[12-15];与能量相关的应用[16,17],其中再次,石墨烯的电子传输能力有助于改善例如电池和电容器的整体特性;催化[18,19],该领域利用了石墨烯/石墨烯衍生物所实现的超高表面积及其增强的电子传输特性,以提高化学反应的整体产量;药物[20-23],其中石墨烯衍生物(特别是石墨烯氧化物)与生物分子相互作用的能力用于实施药物递送,提供用于热破坏癌细胞的选择性电气吸收,用于成像以及许多其他生物医学目的[24,25];复合材料的机械增强和/或复合材料的功能修饰,其中通常通过创建能够承受非常
纳米材料技术是一个具有强大交集的综合主题,其相关的研究内容涉及广泛的现代科学和技术领域。在过去的几年中,纳米材料领域的科学技术吸引了许多研究小组的注意。本质上,这个主题有很大的研究空间,与纳米范围内的非常小的对象有关。纳米材料是指物质达到纳米尺度时的性质突然变化,从而产生了特殊的特性。在本文中,我们介绍了在生物传感领域常用的各种纳米材料,并简要解释了纳米级生物传感器的优势和缺点。同时,我们还解释了基于纳米材料技术的各种生物传感器的工作原理,包括电化学生物传感器,光学生物传感器和压电生物传感器。此外,我们还引入了常见生物传感器的传感靶标,例如酶,DNA,微生物等。最后,我们讨论了纳米材料技术在生物传感中应用的挑战和前景,并分析当前趋势和未来的方向。
遥感的单元I基本原理:遥感的定义:遥感原理,遥感历史。电磁辐射,辐射定律,EM光谱。EMR的相互作用:与大气,大气窗,成像光谱法,与地球相互作用。各种土地覆盖特征的光谱标志。单元-II平台:平台类型。卫星轨道,开普勒定律,卫星特征,地球观测研究的卫星和行星任务。 传感器:传感器的类型和分类,成像模式,光传感器的特征,传感器分辨率 - 光谱,辐射和时间,检测器的特征。 单元III数据接收,处理和图像解释。 地面站,数据生成,数据处理和更正。 错误和校正:辐射,几何和大气。 地面调查以支持遥感。 培训集,准确性评估,测试站点。 地面真相工具和光谱签名,频谱反射率和RS数据植被源的光谱特征:全球和印度数据产品。 视觉图像解释:视觉解释的视觉解释元素的基本原理,视觉解释的技术,解释键单元IV摄影测量法:航空摄影系统的基本原理:历史发展 - 分类 - 垂直照片的几何形状 - 规模 - 浮雕 - 浮雕流离失所 - 倾斜度和倾斜的照片和倾斜的照片,飞行计划。 导热率。 IR图像的特征。 教科书:1。卫星轨道,开普勒定律,卫星特征,地球观测研究的卫星和行星任务。传感器:传感器的类型和分类,成像模式,光传感器的特征,传感器分辨率 - 光谱,辐射和时间,检测器的特征。单元III数据接收,处理和图像解释。地面站,数据生成,数据处理和更正。错误和校正:辐射,几何和大气。地面调查以支持遥感。培训集,准确性评估,测试站点。地面真相工具和光谱签名,频谱反射率和RS数据植被源的光谱特征:全球和印度数据产品。视觉图像解释:视觉解释的视觉解释元素的基本原理,视觉解释的技术,解释键单元IV摄影测量法:航空摄影系统的基本原理:历史发展 - 分类 - 垂直照片的几何形状 - 规模 - 浮雕 - 浮雕流离失所 - 倾斜度和倾斜的照片和倾斜的照片,飞行计划。导热率。IR图像的特征。 教科书:1。IR图像的特征。教科书:1。立体镜:立体镜-Parallax方程 - 视差测量 - 高度的视差杆测量和斜率 - 立体绘图工具的测定。分析和数字摄影测量法:空中照片的方向间接,相对和绝对方向的概念,带状三角剖分,独立模型的阻滞调节(BAIM),特殊情况(切除,交叉点和立体声配件),空中式 - 空中三角形,三角构造,块调节,块调节,矫形器,矫形器,摩擦。单元V热成像:简介 - 动力学和辐射温度,材料的热性能,发射率,辐射温度。热容量,热惯性,明显的热惯性,热扩散性。IR - 辐射仪。天气对图像的影响。i)云,ii)表面风,iii)烟羽的穿透。热图像的解释。微波遥感和激光雷达:简介 - 电磁频谱,机载和空间传播雷达系统基础仪器。系统参数 - 波长,极化,分辨率,雷达几何形状。目标参数 - 背部散射,点目标,体积散射,穿透,反射,bragg共振,跨侧面变化。斑点,辐射校准。微波传感器和图像特征,微波图像解释。LIDAR简介。高光谱遥感。Floyd,F。Sabins,Jr:遥感原理和解释,Waveland Pr Inc,2020 2。Lillesand and Kiefer:遥感和图像解释,John Wiley,2015年。3。4。遥感卷的手册。i&ii,第2版,美国摄影测量学会。Mikhail,E.M.,Bethel,J.S.,McGlone,J.C。(2001)。 现代摄影测量简介。 印度:威利。Mikhail,E.M.,Bethel,J.S.,McGlone,J.C。(2001)。现代摄影测量简介。印度:威利。
信息和通信技术在近几十年来的发展使得这种技术成为可能。今天我们可能面临着类似的情况,微电子技术即将用于生物系统,但半导体与生物环境之间的信号交换仍然受富含缺陷的界面的影响。半导体技术的快速发展也体现在新型微型生物传感器 [1–3] 上,微技术与纳米技术大大提高了生物传感器的灵敏度和性能。纳米生物传感器因较高的表面积与体积比 [4] 而受益于高效的转导机制,并且由于较低的分数维数,理论上分析物扩散速度更快。 [5] 此外,生物相容性、标准化制造工艺和广泛可用的生物功能化协议使纳米硅在许多方面成为生化传感的理想基材。由于硅器件的小型化,表面特性和表面功能化变得越来越重要,通过它们可以调整半导体器件的特性。对各种硅基底(如晶体硅、多孔硅或具有明确有机膜的纳米线)进行化学功能化,可能会显著改变其表面润湿性,[6] 可能会产生掺杂效应,[7] 并允许将分子线集成到传统半导体技术中。[8] 虽然微型硅基底的功能化提供了许多机会来根据您的需求调整其特性,但将生物分子固定在纳米级结构上有时可能具有挑战性。 这可能是由于生物分子在多孔基底的纳米孔中的扩散有限,或者在具有纳米级曲率的表面上不太容易形成明确界定的分子层。 [9]