自从发现诱导的多能干细胞(IPSC)技术以来,已经有许多尝试创建遗传性视网膜疾病(IRD)的细胞模型来研究致病过程以促进目标发现和验证活动。一致性仍然是确定这些发现的效用的关键。尽管一致性很重要,但质量控制指标仍未得到广泛使用。在这篇综述中,提供了用于利用IPSC技术生成感光器,视网膜色素上皮细胞和类器官疾病模型的工具包。在开发IPSC衍生的IRD模型(例如IPSC来源)时,讨论了重新编程方法,质量控制指标,控制策略和分化协议时的考虑。剖析了各种IPSC IRD模型,并讨论了基于IPSC的疾病建模的科学障碍,以概述当前方法和未来的方向。
比我们的自然眼睛能做的要少,因为它们甚至可以检测到单个光子)。目前不可能将这样的眼睛移植到人体内。玻璃圆顶不太适合眼窝,因此科学家们正在寻找使用柔软材料打印半球的可能性。此外,他们希望添加更多的感光器以提高设备的效率。尽管如此,这是朝着创造适合植入的仿生眼迈出的重要一步。首先,该发明表明,使用3D打印生产的半导体与使用昂贵的微加工技术生产的设备一样高效,这大大降低了这种仿生眼睛的成本。其次,首次发现了一种在凹面上印刷半导体的方法,这在微制造中原则上是不可能的。未来这种眼睛可以恢复盲人的视力,但它们也有可能改善任何人的视力(尽管目前尚不清楚这是否需要摘除完全健康的正常眼睛并植入人造眼睛)。但首先我们需要找到一种方法将电信号转换为大脑可以解释的信号。当这种情况发生时,一个人的视野将会发生巨大的变化,也许随之而来的是对世界的看法。
16. 摘要 由于效率和亮度的提高,发光二极管 (LED) 现在是户外照明项目的首选。与产生更长波长和黄色至橙色光的高压钠灯和产生近单色黄光的低压钠灯不同,LED 通常是全光谱白光。由于颜色和强度的差异以及闪烁和非朗伯发射等特殊特性,LED 对野生动物的影响与过去的照明模型不同。目前尚无关于 LED 对野生动物影响的重要有组织的信息。该研究综合了 LED 对野生动物的已知或可能影响,为机构提供了一套通用信息,以准确评估环境影响和缓解方法。在不同的数据库中使用特定的搜索词,使用特定的筛选标准收集相关研究。从最终符合条件的来源中提取离散研究。几乎所有研究的生物都是脊索动物或节肢动物。最常见的脊索动物研究是研究发育,其次是研究运动,其中有大量研究与畜牧业有关。大多数节肢动物研究是研究运动,其次是研究发育,其中有大量研究与蚊子有关。光污染研究可用于评估 LED 的影响,但 LED 的特定闪烁和非朗伯发射特性除外。当前的研究支持通过降低强度、控制溢出、减少持续时间和控制光谱来减轻 LED 的影响,以避免大多数群体对较短波长的峰值敏感性。感光器敏感性的显著变化和 LED 光谱输出的灵活性主张考虑特定受影响物种,以努力减轻 LED 的不利影响。
16.摘要 由于效率和亮度的提高,发光二极管 (LED) 现在是户外照明项目的首选。与产生更长波长和黄色至橙色光的高压钠灯和产生近单色黄光的低压钠灯不同,LED 通常是全光谱白光。由于颜色和强度的差异以及闪烁和非朗伯发射等特殊特性,LED 对野生动物的影响与过去的照明模型不同。目前没有关于 LED 对野生动物影响的重要有组织的信息。该研究综合了 LED 对野生动物的已知或可能的影响,为机构提供了一套通用信息,以准确评估环境影响和缓解方法。使用特定搜索词在不同的数据库中收集相关研究主体,并使用特定筛选标准。从最终合格来源中提取离散研究。几乎所有研究的生物都是脊索动物或节肢动物。最常见的脊索动物研究是先发展后运动,其中大量研究与畜牧业有关。大多数节肢动物研究是先运动后发展,其中大量研究与蚊子有关。光污染研究可用于评估 LED 的影响,但特定 LED 特性(闪烁和非朗伯发射)除外。目前的研究支持通过降低强度、控制溢出、减少持续时间和控制光谱来减轻 LED 的影响,以避免大多数群体对较短波长的峰值敏感性。感光器敏感性的显著变化和 LED 光谱输出的灵活性要求考虑特定受影响物种,以努力减轻 LED 的不利影响。
摘要视网膜衰老被认为是各种视网膜疾病的重要危险因素,包括糖尿病性视网膜病,与年龄相关的黄斑变性和青光眼,这是对它们发育的分子基础的越来越多的了解。这项全面的综述探讨了视网膜衰老的机制,并研究了潜在的神经保护方法,重点是转录因子EB的激活。在这些常见的视网膜疾病的患者和动物模型中,最近的荟萃分析显示了以EB为靶向的转录因子EB靶向策略的有希望的结果。评论批判性地评估了转录因子EB在衰老期间的视网膜生物学,其神经保护作用以及其对视网膜疾病的治疗潜力的作用。转录因子EB对视网膜衰老的影响是细胞特异性的,通过调节线粒体质量控制和营养感应途径,影响视网膜神经元中的代谢重编程和能量稳态。在血管内皮细胞中,转录因子EB控制着重要过程,包括内皮细胞增殖,内皮管的形成和一氧化氮水平,从而影响内部血管视网膜屏障,血管生成和视网膜微型携带。此外,转录因子EB会影响血管平滑肌细胞,抑制血管钙化和动脉粥样硬化。审查强调转录因子EB是视网膜疾病的潜在治疗靶点。在视网膜色素上皮细胞中,转录因子EB调节功能,例如自噬,溶酶体动力学和衰老色素脂肪霉素的清除,从而促进感光受体的存活和调节血管内皮生长因子A涉及的血管内皮生长因子A涉及新血管生长。转录因子EB的这些细胞特异性功能显着影响视网膜老化机制,其中包括蛋白质抑制作用,神经元突触可塑性,能量代谢,微脉管和炎症,最终提供保护视网膜衰老和疾病的保护。因此,必须获得良好控制的直接实验证据,以确认转录因子EB调制在视网膜疾病中的功效,同时最大程度地减少其不良反应风险。关键词:与年龄相关的黄斑变性;抗衰老干预措施;自噬;卡路里限制;糖尿病性视网膜病;锻炼;青光眼;神经调节;吞噬作用;感光器外部段降解;视网膜老化;转录因子EB
摘要视网膜衰老被认为是各种视网膜疾病的重要危险因素,包括糖尿病性视网膜病,与年龄相关的黄斑变性和青光眼,这是对它们发育的分子基础的越来越多的了解。这项全面的综述探讨了视网膜衰老的机制,并研究了潜在的神经保护方法,重点是转录因子EB的激活。在这些常见的视网膜疾病的患者和动物模型中,最近的荟萃分析显示了以EB为靶向的转录因子EB靶向策略的有希望的结果。评论批判性地评估了转录因子EB在衰老期间的视网膜生物学,其神经保护作用以及其对视网膜疾病的治疗潜力的作用。转录因子EB对视网膜衰老的影响是细胞特异性的,通过调节线粒体质量控制和营养感应途径,影响视网膜神经元中的代谢重编程和能量稳态。在血管内皮细胞中,转录因子EB控制着重要过程,包括内皮细胞增殖,内皮管的形成和一氧化氮水平,从而影响内部血管视网膜屏障,血管生成和视网膜微型携带。此外,转录因子EB会影响血管平滑肌细胞,抑制血管钙化和动脉粥样硬化。审查强调转录因子EB是视网膜疾病的潜在治疗靶点。在视网膜色素上皮细胞中,转录因子EB调节功能,例如自噬,溶酶体动力学和衰老色素脂肪霉素的清除,从而促进感光受体的存活和调节血管内皮生长因子A涉及的血管内皮生长因子A涉及新血管生长。转录因子EB的这些细胞特异性功能显着影响视网膜老化机制,其中包括蛋白质抑制作用,神经元突触可塑性,能量代谢,微脉管和炎症,最终提供保护视网膜衰老和疾病的保护。因此,必须获得良好控制的直接实验证据,以确认转录因子EB调制在视网膜疾病中的功效,同时最大程度地减少其不良反应风险。关键词:与年龄相关的黄斑变性;抗衰老干预措施;自噬;卡路里限制;糖尿病性视网膜病;锻炼;青光眼;神经调节;吞噬作用;感光器外部段降解;视网膜老化;转录因子EB