结果:端口在整个队列中没有显着提高生存率,在SEER队列中,中位总生存期为38个月(p = 0.56),中国人群中的39个月(p = 0.75)。然而,在免疫疗法亚组中,中国队列表明,免疫疗法与港口的生存率显着改善(p = 0.044)。多数COX回归分析表明,患者50-59岁的患者(HR = 5.93,95%CI:1.67-21.06)和95%(95%),95%(HR CI:3.04-39.56)与年龄<50岁的患者相比,生存风险增加。此外,YPT3-4阶段患者的风险比YPT1-2阶段的患者更高(HR = 2.12,95%CI:1.14-3.93,P = 0.017)。在CT3-4分期中,观察到类似的趋势,R1/R2和无免疫疗法。淋巴结转移也显示出与生存风险的进行性关系,患者分类为YPN1(HR = 1.90),
摘要为了揭示神经性疼痛经历的复杂性,研究人员试图使用脑电图(EEG)和皮肤电导(SC)鉴定可靠的疼痛特征(生物标志物)。尽管如此,它们用作设计个性化疗法的临床帮助仍然很少,并且患者处方常见和效率低下的止痛药。为了满足这种需求,新型的非药理干预措施,例如经皮神经刺激(TENS),通过神经调节和虚拟现实(VR)激活外周痛缓解,以调节患者的注意力。但是,所有当前治疗方法都遭受患者自我报告的疼痛强度的固有偏见,具体取决于其倾向和耐受性,以及未考虑疼痛发作的时间的未明确,预定义的会话时间表。在这里,我们显示了一个脑部计算机界面(BCI),该界面检测到来自EEG的神经性疼痛的实时神经生理学特征,并因此触发了结合TENS和VR的多感官干预。验证多感官干预有效减轻了实验性诱发的疼痛后,通过电力诱导疼痛,用13个健康受试者对BCI进行了测试,并在实时解码疼痛中显示了82%的回忆。然后用八名在线疼痛精度达到75%的神经性患者进行了验证,因此释放了在神经性患者疼痛感知中引起显着降低(50%NPSI评分)的干预措施。这为使用完全便携式技术的个性化,数据驱动的疼痛疗法铺平了道路。我们的结果证明了从客观神经生理学信号中实时疼痛检测的可行性,以及VR和TEN的触发组合的有效性以减轻神经性疼痛。
大型真核基因组被包装到核的受限区域中,以保护遗传密码并提供一个专门的环境来读取,复制和修复DNA。基因组在染色质环和自我相互作用域中的物理组织提供了基因组结构的基本结构单位。这些结构排列是复杂的,多层的,高度动态的,并且影响了基因组的不同区域如何相互作用。通过增强剂促进剂相互作用在转录过程中的作用已得到很好的确定。不太了解的是核结构如何影响DNA复制和修复过程中染色质交易的大量交易。在这篇综述中,我们讨论了在细胞周期中如何调节基因组结构,以影响复制起源的定位和DNA双链断裂修复的协调。基因组结构在这些细胞过程中的作用突出了其在保存基因组完整性和预防癌症的关键参与。
特征为平坦、上升、下降-上升或下降。每个声谱图内的轮廓用白色虚线突出显示。 (B) 视觉音调标记在感知上与每个音调的音高轮廓一致,可用于多感官感知丰富。 (C) 视觉表示在语义上与 (A) 中呈现的音调的单词含义一致,可用于多感官语义丰富。 (D) 音高轮廓的手势、感知一致的表示。来源:认知科学趋势 (2022)。DOI:10.1016/j.tics.2022.10.007
“自然语言处理,数字人文科学和语料库语言学的学术社区将受益于对彼此领域的更深层次的互动和意识”(Jenset和McGillivray 2017:125,137)
1 荷兰埃因霍温理工大学复杂分子系统研究所 2 荷兰埃因霍温理工大学机械工程系微系统研究所 3 德国亚琛工业大学电气工程与信息技术学院 4 德国于利希研究中心生物信息处理 - 生物电子研究所 5 新加坡国立大学材料科学与工程系(MSE) 6 新加坡国立大学电气与计算机工程系(ECE) 7 加拿大舍布鲁克大学技术创新跨学科研究所(3IT) 8 加拿大舍布鲁克大学纳米技术纳米系统实验室(LN2)-CNRS UMI-3463 9 电子、微电子和纳米技术 (IEMN),里尔大学,阿斯克新城,法国
摘要 - 实施具有新兴记忆(例如电阻随机访问记忆(RRAM))的系统设计的系统是减少人工智能能源消耗的重要铅。为了在此类系统中实现最大的能量效率,应尽可能紧密地集成逻辑和内存。在这项工作中,我们关注三元神经网络的情况,其中突触权重假设三元值。我们提出了一种使用预感的两种晶体管/两抗记忆体系结构,其中可以在单个感觉操作中提取重量值。基于对具有这种感觉放大器的杂交130 nm CMOS/RRAM芯片的实验测量,我们表明该技术在低供应电压下特别适合,并且对于处理,电压和温度变化具有弹性。我们表征了方案中的位错误率。我们基于CIFAR-10图像识别任务的神经网络模拟显示,三元神经网络的使用显着提高了神经网络的性能,而对于二进制二进制,这通常是推理硬件而言是优先的。我们最终证明了神经网络对我们方案中观察到的位误差的类型免疫,因此可以在没有误差校正的情况下使用。
据信脊椎动物海马在区域CA3中使用复发连通性来支持部分提示的情节记忆回忆。这个大脑区域还包含放置细胞,其位置选择性射击场实现了支持空间内存的地图。在这里我们表明,将细胞出现在经过训练的网络中,以记住时间连续的感觉发作。我们将CA3模拟为一种反复的自动编码器,该自动编码器回顾并重建了通过遍历模拟竞技场的代理商嘈杂且部分遮挡观察的感觉体验。用啮齿动物和环境建模的逼真的轨迹移动的代理被建模为连续变化,高维,感官体验图(具有平滑的高斯随机场)。训练我们的自动编码器准确地模式结合和重建感觉体验,并限制对总活动的限制会导致空间定位的射击场,即位置单元格,以在编码层中出现。The emergent place fields reproduce key aspects of hippocampal phenomenology: a) remapping (maintenance of and reversion to distinct learned maps in different environments), implemented via repositioning of experience manifolds in the network's hidden layer, b) orthogonality of spatial representations in different arenas, c) robust place field emergence in differently shaped rooms, with single units showing multiple place fields in large or complex spaces, and d)慢速代表性漂移的位置场。我们认为这些结果是因为空间的连续遍历使感觉体验在时间上连续。我们的实验代码可在1处获得。我们做出可测试的预测:a)a)迅速变化的感觉上下文将破坏位置字段,b)即使循环连接被阻止,位置字段也会形成,但是在重新映射时对先前学习的表示形式的尊重将被废除,c)临时平稳的体验的维度设置了位置字段的尺寸,包括在虚拟导航中,包括抽象的虚拟导航。
。CC-BY-NC-ND 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 25 日发布。;https://doi.org/10.1101/2025.01.22.634363 doi:bioRxiv 预印本
摘要 . 了解大脑不仅对理解生命的复杂性或基础生物科学的进一步发展具有内在的吸引力,而且对提高我们的幸福感也具有高度相关性,因为大脑表现出一种对身体的控制力,使其既能够引发疾病,也能够促进愈合过程。考虑到大脑发挥的双重作用,即使用上升和下降路径将来自外部世界和内部环境的信息结合起来,这篇综述挑战了以大脑为中心的大脑观。在我们的日常生活中,我们通过将化学物质、压力变化和光波转化为味觉、气味、触觉、声音和视觉来构建外部世界的表征。在此过程中,我们通过一种称为外感觉的过程来解释我们的感官,从而创造我们对外部世界的体验。但要想引人注目,笛卡尔对大脑的这种看法必须通过整合我们身体内部的事件来完成。大脑构建我们内在感觉(称为内感觉)的方式现在开始被揭示。因此,脑科学经历了一场重要的革命,并将经历一场革命,重新定义其超越头骨的界限,倾向于更全面的视野,即通过具身大脑的概念来实现,大脑充当巧合探测器,将感官体验与身体稳态相结合。本综述的目的是强调一些机制,通过这些机制,大脑活动受内部线索控制,以便更好地预测。这里以肠脑轴为典型例子,讨论内部环境与大脑功能之间的沟通,这些沟通塑造了我们的感觉和思维方式。