千克是国际单位制 (SI) 中唯一仍由物质工件定义的基本单位。考虑到IS过去的发展以及对国际原型稳定性的了解甚少,这个定义并不令人满意。从长远来看,最好用基于原子属性或基本常数的定义来替换它。在计量实验室正在进行的各种研究中,最有前途的途径之一似乎是“瓦特平衡”。其原理是将机械功率与电磁功率进行比较。它是通过分两个阶段进行的测量得出的结果:静态阶段,将作用在载有电流并放置在感应场中的导体上的拉普拉斯力与标准质量的重量进行比较,以及动态阶段,其中当导体以已知速度在同一感应场中移动时,确定同一导体上感应的电压。通过与约瑟夫森效应和量子霍尔效应进行比较来确定电量,从而可以将质量单位与普朗克常数联系起来。虽然实验原理仍然简单明了,但获得相对不确定性
千克是国际单位制(SI)中唯一仍由实物定义的基本单位。鉴于 IS 过去的发展以及对国际原型稳定性的了解甚少,该定义并不令人满意。从长远来看,最好用基于原子属性或基本常数的定义来替代它。在计量实验室正在进行的各种研究项目中,最有前景的途径之一似乎是“瓦特平衡”。其原理是将机械力与电磁力进行比较。它是通过两个阶段的测量得出的:静态阶段,将施加在载流导体上并放置在感应场中的拉普拉斯力与标准质量的重量进行比较;动态阶段,当导体以已知速度在相同感应场中移动时,确定相同导体端子上感应出的电压。通过与约瑟夫森效应和量子霍尔效应进行比较来确定电量,就可以将质量单位与普朗克常数联系起来。虽然实验原理仍然简单明了,但获得相对不确定性
⇤⇤ 正如我们在基础热力学讲座中所看到的,“热就是热,功不同”。然而,对于磁系统,将功写为 − ~m · d ~ B ext 或 + ~ B ext · d ~m 总是会引起一些混淆。产生这种混淆的原因是,总磁场 ~ B 是外部场与顺磁体中感应场的总和,即 ~ B = ~ B ext + ~ B ind 。这些场由电流密度 ~ J = ~ J ext + ~ J ind 产生,并且所有三个场(总场、外部(自由)场和感应(束缚)场)均遵循安培定律, ~ r ⇥ ~ B = µ 0 ~ J ,其中 µ 0 是真空中的磁导率。为了计算出晶体所做的功的量,我们需要从系统的哈密顿量中去除外部场的贡献。不幸的是,这项任务并不简单,因为法拉第定律要求当系统的总磁场发生变化时,在产生外部场的装置中产生反电动势。换句话说,需要做功来维持外部电流和磁场。这个功,d W = − dt
燃料燃烧炉:应预热空坩埚,直至其达到均匀的鲜红色(约 900°C),以预处理釉料。预热时间取决于坩埚的大小。对于大容量坩埚和高输出燃烧器的熔炉,应在初始阶段控制升温速度,以尽量减少热应力。从环境温度到红热所需的时间通常长达 1 小时。避免火焰直接撞击坩埚表面。感应炉:加热过程取决于炉子频率、线圈尺寸和熔化金属的电阻率。建议尽可能预热空坩埚。最初应限制功率输入率,直到坩埚整个表面变成鲜红色。预热所需的时间取决于坩埚的大小,但通常在 20 – 40 分钟范围内。一旦坩埚的三分之一充满熔融金属,功率就可以增加到更高的水平。碳化硅坩埚从感应场吸收成比例的高功率。应注意不要使坩埚过热。实际最大功率设置应根据经验进行评估,并取决于坩埚的容量。应监测坩埚内壁的外观是否有过热迹象,一旦全部炉料熔化,功率应降低。