摘要:通过自供电传感器系统对高压电力线进行状态监测已成为公用事业的首要任务,目的是检测潜在问题、提高电力传输和配电网络的可靠性并减轻故障的不利影响。从流过高压线的交流电产生的磁场中收集能量可以为监测系统提供运行所需的电力,而无需依赖硬接线或基于电池的方法。然而,开发一种从如此有限的能源中获取电力的能量收集器需要详细的设计考虑,这可能无法产生技术和经济上最优的解决方案。本文提出了一种创新的基于模拟的策略来表征感应电磁能量收集器和功率调节系统。可以对收集的功率和输出电压范围或磁芯饱和度水平提出性能要求。模拟模型已经产生了满足要求的不同收集器配置。通过基于能量收集器的实验装置验证了该方法的准确性和效率,该能量收集器由硅钢磁芯和功率调节单元组成。对于最坏情况,当初级电流为 5 A 时,收集器提取的最大功率可以接近 165 mW,功率密度为 2.79 mW/cm3。
分布式的声传感(DAS)允许将光纤变速(例如传统电信或工程电缆)变成密集的地震仪(即地震天线)可以连续几公里对地震波场进行采样(几乎)。DAS系统由审讯器和光纤电缆组成。das系统利用反向散射,这是一种现象,其中波浪遇到的反射体远小于其主要波长。在光纤中,当光脉冲与不同折射率的点(例如纤维中的杂质)相互作用时,会发生反向散射。egss,具有高温干岩层的人工地热储层,使用液压刺激,在高压下注入流体,以创建裂缝网络以进行热示驱动器。然而,诱导的地震性仍然是一个关注点(Grigoli等,2018)。为了解决这个问题,美国能源部在犹他州启动了锻造实验,重点是开发地热环境中诱导地震性的微震膜监测方法(Lellouch等,2021)。
11月的MW 5.5 Pohang地震,这是南部Koreo的统一性案例。 科学360:1003–111月的MW 5.5 Pohang地震,这是南部Koreo的统一性案例。科学360:1003–1
参数 最小值 最大值 单位 VDD1,VDD2 电源电压 2 – 0.5 6.5 V VINP,VINN 模拟输入电压 GND1 – 6 6.5 V VOUTP,VOUTN 模拟输出电压 GND2 – 0.5 VDD2 + 0.5 3 VI IN 除电源引脚外任何引脚的输入电流 – 10 10 mA TJ 结温 150 °CT STG 存储温度 – 65 150 °C 注:1. 超出绝对最大额定值下所列的应力可能会对器件造成永久性损坏。这些仅为应力额定值,并不保证器件在这些条件下或任何其他超出建议工作条件的条件下能够正常运行。长时间暴露于绝对最大额定条件下可能会影响器件的可靠性。 2. 所有电压值均相对于本地接地端子(GND1 或 GND2),并且为峰值电压值。 3. 最大电压不得超过 6.5 V。7.2 ESD 额定值 值 单位
摘要:当光与复杂介质相互作用(例如较少或多模式光纤)相互作用时,发生的复杂的光学失真通常是随机的,并且是通信和传感系统的错误源。我们提出使用轨道角动量(OAM)特征提取来减轻相位噪声,并允许使用联合偶联作为纤维传感的有效工具。OAM特征提取是通过被动的全光OAM消除来实现的,我们以94.1%的精度演示了纤维弯曲跟踪。相反,当使用经过卷积的神经网络进行培训的纤维输出强度测量训练时,确定相同的弯曲位置仅获得了14%的精度。此外,与基于强度图像的测量值相比,OAM特征提取的训练信息减少了120倍。这项工作表明结构化的轻型机器学习可以在各种未来的传感技术中使用。
在60多年前提出了分子生物学的中心教条时,mRNA被假定为瞬态信使或不稳定的中间体,并将核糖体提供信息以供蛋白质合成(Brenner等,1961; Crick,1958; Gros et al。,1961)。随着对基因表达的研究,转录后调节的重要性,RNA世界的证据和RNA的中心性得到了极大的认识(Gilbert,1986; Sharp,2009)。因此,对RNA代谢的机械理解提供了有关基于RNA的技术和治疗学的新见解(Damase等,2021)。特定基因由CRISPR-CAS基因组编辑平台中的指导RNA(GRNA)靶向,而mRNA表达则由反义寡核苷酸(ASOS)和RNA干扰(RNAI)技术调节。这些功能丧失方法是针对疾病中致病基因表达的,并且正在演变为有前途的治疗剂。同样,功能获取的方法已成为一种有吸引力的治疗性,这是通过在2019年冠状病毒病(COVID-19)大流行期间引入的有效mRNA疫苗技术的明显说明的。在有关“生物学和治疗学的RNA”的特刊中,我们描述了RNA生物学的基本概念如何转化为新型治疗学(图1)。在第一篇文章中,达娜·卡罗尔(Dana Carroll)(犹他大学)回顾了CRISPR-CAS基因组编辑平台的一般原则以及基础编辑技术的最新进展。CRISPR-CAS技术的临床应用得到了很好的总结,还讨论了基于CRISPR的疗法的其他问题;后者中的一些也可能适用于其他基于RNA的治疗应用。
摘要这项研究的目的是表明,预测天气的过程是困难而复杂的,需要从多个来源(包括卫星,雷达,传感器和模型)收集,分析和处理大量数据。精确且及时的天气预报可能会对人类生存的许多不同领域(例如农业,运输,能源,健康和安全)产生重大影响。标准天气预测技术经常依赖于预定的准则,推定和限制,这些准则和限制无法完全解释动态大气系统的复杂性和不可预测性。在这项研究中,我们弄清楚机器学习是如何使计算机从数据中学习并增强其功能的人工智能子场,可能有助于提高天气预报的精度。
在诸如生物医学和人机互动之类的有吸引力平台的快速发展已经对具有高强度,灵活性和自我修复功能的智能材料产生了紧迫的需求。然而,由于非共价键合固有的低强度,高强度,低弹性模量和治愈能力之间的交易挑战了现有的自我修复能力材料。在这里,从人类纤维细胞中汲取灵感,基于两亲离子限制器(7000倍的体积单体捕获)中的分离和重新构造,提出了一种单体捕获合成策略,以开发出Eutectogel。从纳米配置和动态界面相互作用中获得的好处,形成的配置结构域的分子链主链机械地加强了软运动能力。所产生的共凝剂表现出优异的机械性能(比纯聚合的深层共晶溶剂比抗拉伸强度和韧性高1799%和2753%),出色的自我修复效率(> 90%),低切向切向模量(在工作阶段的0.367 MPA)以及启发人类的人类活动。该策略有望为开发高强度,低模量和自我修复的可穿戴电子设备提供新的视角,适合人体运动。
逆转录病毒可被先天免疫传感器环鸟苷酸环磷酸腺苷合酶 (cGAS) 检测到,该合酶可识别逆转录 DNA 并激活抗病毒反应。然而,HIV-1 保护其基因组免受 cGAS 识别的程度仍不清楚。为了详细研究这一过程的机制,我们在无细胞系统中重建了 HIV-1 的逆转录、基因组释放和先天免疫感应。我们发现,即使在完成逆转录后,野生型 HIV-1 衣壳也能保护病毒基因组免受 cGAS 的侵害。病毒 DNA 可能因热应激、衣壳突变或肌醇六磷酸 (IP6) 浓度降低而“脱保护”,这些因素会使衣壳不稳定。令人惊讶的是,衣壳抑制剂 lenacapavir 也会破坏病毒核心并显著增强 cGAS 活性,无论是在体外还是在细胞感染中。我们的研究结果提供了生化证据,表明 HIV-1 衣壳晶格隐藏了 cGAS 的基因组,而病毒核心的化学或物理破坏可以暴露 HIV-1 DNA 并激活先天免疫信号。