内寄生生物是许多昆虫物种的重要天然敌人,并且是宿主免疫系统上的主要选择性力量。尽管人们对昆虫抗嗜酸脂的免疫感的兴趣增加,但关于果蝇外部宿主免疫防御的生物途径和基因调节的进化动力学的信息很少。我们从两种甲虫物种中从头组装的转录组,并使用了时间表差分表达分析来研究基因表达在密切相关的物种Pusilla和G. calmariensis中的基因表达不同,它们分别具有抗性和易感性,可抵抗和易感性地受到parviclava parviclava parasitoids的抗性感染。分别组装了大约2.71亿和2.24亿配对的读数,并分别对G. Pusilla和G. Calmariensis进行了52,563和59,781个成绩单。在整个转录组中,在这两个物种中都展示了与能量生产,生物合成过程和代谢过程相关的功能类别的富集。物种之间的主要区别似乎是G. pusilla幼虫所安装的免疫反应和伤口愈合过程。分别在G. pusilla和G. calmariensis中鉴定出对果蝇的相互爆炸,120和121个与免疫相关的基因。在G. pusilla中差异表达了更多的免疫基因,而不是在G. calmariensis中,特别是参与信号传导,造血和黑色素化的基因。相比之下,在G. calmariensis中仅差异地表达了一个基因。我们的研究表征了寄生虫感染后参与不同免疫功能的重要基因和途径,并支持信号传导和造血基因的作用,是对寄生虫WASP的宿主免疫中的关键参与者。
摘要 通过在具核梭杆菌中创建框内缺失突变来使基因失活非常耗时,并且大多数具核梭杆菌菌株在遗传上是难以处理的。为了解决这些问题,我们引入了一种基于核糖开关的可诱导 CRISPR 干扰 (CRISPRi) 系统。该系统采用核酸酶失活的化脓性链球菌 Cas9 蛋白 (dCas9),通过持续表达的单向导 RNA (sgRNA) 特异性地引导至目的基因。从机制上讲,这种 dCas9-sgRNA 复合物成为 RNA 聚合酶难以逾越的障碍,从而抑制了目标基因的转录。利用这个系统,我们首先研究了两个非必需基因 ftsX 和 radD,它们对于具核梭杆菌的胞质分裂和共聚集至关重要。添加诱导剂茶碱后,ftsX 抑制导致类似于染色体 ftsX 缺失的丝状细胞形成,而靶向 radD 则显著降低 RadD 蛋白水平,消除 RadD 介导的共聚集。随后将该系统扩展到探测必需基因 bamA 和 ftsZ,这两个基因对于外膜生物合成和细胞分裂至关重要。令人印象深刻的是,bamA 抑制破坏了膜完整性和细菌分离,阻碍了生长,而 ftsZ 靶向会在肉汤中产生细长的细胞,并且琼脂生长受到损害。对 F. nucleatum 临床菌株 CTI-2 和 Fusobacterium periodonticum 的进一步研究表明,靶向 tnaA 时吲哚合成减少。此外,沉默 F. periodonticum 中的 clpB 会降低 ClpB,从而增加热敏感性。总之,我们的 CRISPRi 系统简化了各种梭杆菌菌株的基因失活。
个人与数字材料之间的抽象相互作用随着元评估的出现而完全改变。因此,即时需要构建尖端的技术,该技术可以识别用户的情绪并不断提供与其心理状态相关的材料,从而改善其整体经验。研究人员提出了一种自然语言处理算法和基于神经模糊的支持向量机自然语言处理(SVM-NLP)的创造性方法,研究人员提出了满足这一需求。通过这种合并,元评估将能够提供高度量身定制和引人入胜的体验。最初,开发了一种神经模糊算法,以通过其生理反应和其他生物识别信息来识别人们的情绪情绪。模糊的逻辑和支持向量机共同努力管理继承的歧义和不可预测性,这导致情绪的更精确和准确的分类。ACGA的一个关键组成部分是NLP技术,它使用实时情感数据在元视频中动态修改和个性化角色,故事和交互功能。提出的方法的新颖性在于基于神经模糊的SVM-NLP算法的创新整合,以准确识别和适应用户的情绪状态,从而增强各种应用程序的元体验。使用Python软件实现了采用的方法。更强的人与计算机相互作用和更广泛的应用,包括虚拟疗法,教育资源,这种适应性方法可显着增强用户的沉浸感,情感参与以及在增强现实环境中的整体满意度,通过为他们的回答调整信息。调查结果表明,基于神经模糊的SVM-NLP情绪识别算法在识别情绪状态方面具有很高的准确性,这有望创建一种更具表情的元评估,更具情感性和沉浸式。
方法:在连续三年的人工接种下评估了三种抗氧蛋白耐基因型的含量的XUHUA13,该近近交系(RIL)种群的抗性抗毒素的抗性XUHUA13与抗氧蛋白耐药基因型6的抗性。进行了遗传连锁分析和QTL-SEQ用于QTL映射。使用二级分离映射群体进一步绘制了候选基因,并通过转基因实验进行了验证。抗抗性和易感性RIL之间的RNA-seq分析用于揭示候选基因的抗性途径。结果:丙氧蛋白产量抗性的主要效果QTL QAFTRA07.1映射到1.98 MBP间隔。基因AHAFTR1(Arachis hypogaea a丙毒素耐药1)在其生产的浓度丰富的重复(LRR)结构域中检测到结构变化(SV),并通过效应触发的免疫(ETI)途径参与了疾病抗性反应。与AHAFTR1相比,AHAFTR1过表达(ZH6)过表达的转基因植物表现出57.3%的A丙氧蛋白(XH13)。基于SV开发了分子诊断标记Aftr.del.A07。与易感对照的中国人(ZH12)相比,三十六条线的含量降低了77.67%以上,是从花生种质种质添加量和育种线鉴定的,通过使用aftr.del.del.del.a07鉴定出来。结论:我们的发现将提供丙氧蛋白产量抗性机制和为进一步育种计划奠定的有意义的基础。2023作者。由Elsevier B.V.代表开罗大学出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要:环境在抗菌耐药性(AMR)的出现和传播中的作用越来越被认可,引发了有关与环境AMR相关的公共卫生风险的问题。然而,对环境系统中抗性细菌之间的致病性知之甚少。现有关于AMR与毒力之间关联的研究是矛盾的,因为拟合成本和遗传共发生可能与影响相反。使用从北卡罗来纳州东部的地表水分离的大肠杆菌,我们比较了抗抗生素抗性和易感性的分离株之间的毒力基因患病率。我们还比较了有或没有商业猪操作(CHOS)的子球的分离株的患病率。先前已评估过表型AMR的分离株是通过将抗分离株与从相同的样品日期和位点的完全易感分离株匹配的分离株配对,形成了87对。通过常规PCR评估这174个分离株的七个毒力基因(BFP,FIM H,CNF -1,STA(EST A),EAST -1(AST A),EAE和HLY A)。在93.1%的分离株中发现了一个基因。不包括最终,在24.7%的分离株中检测到至少一个毒力基因。在至少一种抗生素的抗性与至少一种毒力基因的抗性,四环素耐药性和毒力基因的存在,耐药性和STA的存在与四环素抗性和STA的存在之间,发现了显着的负相关。在CHO存在与毒力之间没有发现显着的关联,尽管一些亚签名的关联值得进一步研究。这项工作建立了我们对通过环境和潜在健康风险控制AMR传播的因素的理解。
过去二十年爆发了许多病毒性疾病,如基孔肯雅热、埃博拉、寨卡、尼帕、H7N9 禽流感、H1N1、SARS 和 MERS。这十年来,世界因一场新的疾病爆发而醒来。2019 年 12 月,中国湖北省武汉市爆发了一种新型冠状病毒。大多数最初确诊的患者都追溯到屠宰和销售活体动物的“海鲜市场”。该市场可能扮演了一个放大热点的角色,病毒从这里传播到中国其他地区,随后在很短的时间内传播到 213 个国家和地区。世界卫生组织于 2020 年 2 月 11 日将此疾病命名为“COVID-19”,这是 2019 冠状病毒病的缩写。截至 2020 年 8 月 17 日,全球共报告确诊病例 2120 万例,死亡人数 761,000 人 [1] 。美国、印度、巴西和俄罗斯报告了最严重的 COVID-19 疫情,这些国家的病例数已超过中国的确诊病例数。世界卫生组织于 2020 年 1 月 30 日将当前爆发的 COVID-19 宣布为“国际关注的突发公共卫生事件”,并于 2020 年 3 月 11 日宣布为“大流行”。尽管严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2;2.9%) 的死亡率远低于 SARS-CoV (9.6%) 和 MERS-CoV (34.4%),但 SARS-CoV-2 与其他冠状病毒相比的高传染性已成为全球关注的问题。研究发现,男性的 COVID-19 死亡率和易感性高于女性,这可能归因于吸烟等其他性别行为 [2] 。COVID-19 的死亡率随年龄梯度而变化,也受到潜在合并症的影响,换句话说,糖尿病、高血压、癌症、心血管疾病和慢性呼吸系统疾病等疾病 [3–5] 。未观察到 COVID-19 母婴垂直传播 [6] 。儿童易感染 COVID-19,但往往只表现出轻微症状 [7] 。
SPV 端的谐波和电压调节利用太阳能发电的热潮已经取代了很大一部分传统发电方式,同时,具有大量无功分量的负载实际上会降低系统的功率因数。随着太阳能光伏电站 (SPV) 的普及,功率因数、功率因数校正、无功功率要求和谐波对于消费者和公用事业都变得非常重要。众所周知,电网中的容性负载会导致功率因数超前和过压,而感性负载会导致功率因数滞后和欠压。系统的低功率因数会给电网带来很高的输电负担(和损耗),因此,大多数监管机构都规定允许公用事业公司向大宗消费者收取低功率因数的罚款。传统 SPV 系统以单位功率因数运行,而不考虑公用事业网络的无功功率需求。实际上,这种光伏系统连接到电网时,会降低负载端的功率因数,因为有功功率的一部分是通过 SPV 满足的(其中 SPV 容量小于消费者端的负载),然后电网提供平衡有功功率,但保持相同数量的无功功率给连接的负载。这可以通过以下简单示例来解释:示例:- 图 1 中的前提是消耗 1000kW 的有功功率和 450KVAr 的无功功率,导致功率因数为 0.912(滞后)和标称较低的系统电压。如果该场所安装了一个 500kW SPV 系统,该系统以单位功率因数输出电力,则只有从电网输入的有功功率会减少(以(SPV)发电的程度为准)。从电网吸收的无功功率将保持不变。如果 SPV 电厂发电 500 kW,则从电网吸收的无功功率将为 500kW 和 450kVAR。实际上,电网功率的功率因数将滞后 0.743。因此,负载端的电压将进一步下降。图 1
摘要 :在绘画课中有目的地使用信息和通信技术 (ICT) 为吸引各种形式的感性和理性认知提供了机会,以便全面研究和彻底吸收所研究对象和现象的本质;形成学生的科学思维方式;发展未来专家的创造能力;提高教育过程的效率等。本文的目的是探索 ICT 工具在未来技术教师绘画课图形培训过程中的教学能力。已确定,只有使用特殊软件才能在学生的图形准备过程中有效地使用 ICT。在这方面,根据各种分类特征(教学目标;基本架构;科学知识分支;功能目的)对可用于未来技术教师绘画课图形培训过程中的软件工具进行了分析和系统化。介绍了在学生图形准备中系统使用各种软件教学功能的实践经验(教育演示文稿、电子数据库、电子目录、控制软件)以及建模软件的一般特征,包括计算机辅助设计系统(ArchiCad、AutoCad、SolidWorks、T-Flex Cad、COMPASS),这些软件已成为学生图形准备中最广泛的软件。作者揭示了 COMPASS 程序在学习几何、投影、机械制造、示意图和施工图过程中的功能可能性和教学意义。本文介绍了在未来技术教师的图形培训过程中实施 ICT 工具(包括 COMPASS 程序)的结果。关键词:信息和通信技术;软件;实践经验;教育过程;绘画课;创造能力的发展。如何引用:Nyshchak, I., Martynets, L., Kurach, M., Buchkivska, G., Greskova, V., & Nosovets, N. (2020)。信息和通信技术在未来技术教师图形培训中的教学机会。BRAIN。人工智能和神经科学的广泛研究,11 (2), 104-123。https://doi.org/10.18662/brain/11.2/77
术语定义抗微生物杀死微生物或停止其生长的药物。抗生素有时与抗菌剂但严格定义的抗生素使用,抗生素仅是指自然产生的剂,不包括合成化合物。抗菌剂将在本文档中使用。抗菌管理是指旨在促进抗微生物剂的最佳使用的协调干预措施,包括决定使用它们,药物选择,给药,剂量,路线和给药时间。伴侣动物包括一只家狗,猫,兔子(除了供人类食用的兔子外),一只小啮齿动物,笼子鸟,鸽子鸽子,玻璃容器和水族馆鱼类或均衡的量子,被声明不打算用作人类食用的食物。培养和易感性(C&S)是指允许鉴定出微生物的疾病的微生物实验室技术,并确定哪些抗菌剂鉴定出的微生物易于体外(哪些抗微生物是有效的,抗微生物)。氧化对象治疗一组没有疾病证据的动物,这些动物与确实有传染病证据的其他动物密切接触。食物生产动物的动物是牛,辣椒,卵巢或猪,家禽,兔子,鹿,鱼类或蜜蜂的动物,如果这种兔子,鹿或鱼类旨在用作人类食用的食物,或者用于人类食用食物,或者用于用作人类食用的食物。“关闭标签”在产品文档和特定产品特征(SPC)表中指定的营销授权条款之外使用药物;有时被称为“应用级联反应”抗菌剂对具有传染病的高风险的动物(但没有当前疾病,在群或羊群中没有已知疾病)。预防症预示着感染的风险增加。这种情况的例子包括动物的运输,年轻动物的断奶以及将动物局限于小的,拥挤的空间。兽医处方是由注册兽医从业者发出的电子或物理文件,该文件针对其护理下的动物,该动物提供给动物的动物疗法。
冻干(也称为冷冻干燥)是一种通过水或其他溶剂的升华和解吸将液体转化为固体的过程。该过程包括三个高度相互关联的阶段:冷冻、初级干燥(升华)和二次干燥(解吸)。冻干通常用于稳定在液体或冷冻形式下不稳定的活性药物成分 (API) 和配方。由于冻干不需要加热,因此它是热敏感 API 和生物制剂(如蛋白质和肽)的理想干燥方法。当使用冻干制造肠外药物产品时,所得粉末被密封在小瓶、药筒或注射器内。在给药前,将冻干粉重新配制或与液体稀释剂混合,以形成用于注射的均匀溶液或悬浮液。冻干粉的高表面积允许在床边快速重新配制(即补液)和注射,这对于紧急产品特别有用。这些产品高度稳定,保质期通常超过两年。冻干也可用于生产中间粉末,然后进一步加工成最终剂型。例如,可将具有高残留溶剂含量和热敏感性的粉末冻干,以在进行进一步加工之前除去溶剂。冻干也可用于生产稳定、可流动的粉末,以进行研磨或直接压片。在需要非常小的填充量的粉末填充中,将粉末溶解在液体中并冻干有助于控制重量,因为控制液体填充的体积更容易。冻干最重要的特性或许是它与无菌操作的兼容性,使其成为从开发开始的肠外给药的可靠选择。 2013 年至 2015 年,获批的注射和输注药物中,有一半是冻干产品,而 1990 年至 1981 年,冻干产品仅占 10%。这其中包括价值数十亿美元的小分子药物 Alimta®,以及 Lupron Depot®、Keytruda® 和 Herceptin® 等重磅生物制剂。随着复杂配方和水稳定性较差的生物制剂变得越来越普遍,冻干药物产品的增长预计只会持续下去。