“作为美国人,我们生活在一个大熔炉国家,数百万来自不同阶层的人交织在一起,每个人都有着独特的故事。我的祖先的过去决定了现在,我将塑造我们的未来。我感谢我的祖父母,他们让我的家庭过上了今天的生活。他们来自菲律宾,决定在关岛寻求庇护,为家人创造更光明的未来,并保护他们的孩子免受战争的伤害。他们以勤奋、决心、勇气和牺牲为基础扎根。这些基本原则引导我的母亲参军,她激励我和妹妹追随她的脚步。她鼓励我们变得更好,为我们家庭的未来开辟道路。参加空军学院是我一生中难得的机会。这也是我第一次访问美国本土!它让我在实现服役梦想的同时学到了很多东西。当时,我并没有意识到这条道路会对我的生活产生多大的影响,也没有意识到我对航空有任何热情。直到大三参加国际航空女性大会时,我才意识到这一点。在那里,我遇到了一位鼓舞人心的导师,凯瑟琳·阿曼迪中校。当时,她是空军招募服务处第一支队的指挥官。她负责接待会议上的空军与会者。当我听到她的演讲时,我发现我很容易与她产生共鸣。她也有 AAPI 血统,我的家庭也和我一样出身卑微。她的热情极具感染力。我记得她说过,“如果他们亲眼看到,就会相信。”那天,她和其他几位女飞行员激励了我,我终于看到了自己在航空领域的新未来。短短几年后,我在彭萨科拉海军航空站开始了军官和学生作战系统官的旅程。正是在这里,我们再次相遇。她现在是我的指挥官,领导第 479 学生中队,并继续激励我作为一名飞行员、一名女性和一名 AAPI 建立自己的传奇。有些人会称之为巧合,但我称之为命运。”
在全球范围内,丙型肝炎和C病毒是其他肝炎病毒(A,D,E),由于它们对流行病,疾病负担和死亡率的高潜力,它们引起了人们的关注[1,2]。分别受到撒哈拉以南非洲的大约3.5亿和1.7亿人感染了丙型肝炎病毒(HBV)和丙型肝炎病毒(HCV),大部分受影响[1]。加纳慢性HBV和HCV感染的患病率分别为15.6%和5.4%[2-4]。此外,发现无症状的病毒性肝炎(HBV和HCV)感染分别为6.9%和1.8%,分别为Volta Ghana HO的一般成人人群[5]。尽管HBV和HCV正在上升,但与其他病毒感染(如加纳的人类免疫缺陷病毒(HIV))相比,尚未对这些病毒的关注。但是,世界卫生组织(WHO)透露,HBV和HCV的感染力比HIV Corre的50到10倍[1]。美容师和理发师致力于通过剃毛和塑造头发和修剪指甲为客户增添漂亮的美感。包括加纳在内的发展中国家的大多数工人更多地关注商店的装饰和娱乐,而不是降低与其职业相关的风险[6]。他们为加纳的大多数社区提供服务,而忽略了他们的工作场所和服务可以通过其职业工具的认证和磨损来源[7,8]来源[7,8],尤其是在适当的占用实践和感染预防和控制(IPC)措施时[9,10]。在尼日利亚进行的一项研究,以评估商业理发师之间的预防方法,发现10%和72%的参与者分别对其仪器(发剪)进行了消毒和消毒,而其中52%的参与者使用煤油,一种煤油,一种无效的消毒剂,用于消毒程序。在同一研究中,用于清洁剪裁器的指定刷子也用于刷客户的头发[8]。在埃及,阿塔拉(Atallah)和他的同事观察到77%的理发师消毒了使用的工具,63%的手洗手,而62%的人使用了保护性
PCB3402 疾病生态学与进化 (2024 年秋季) 课程描述 疾病生态学与进化是一门综合课程,重点关注宿主-病原体关系的双方。我根据“同一个健康”方法建立了这门课程,该方法认为人类健康与动物和生态系统健康密切相关。因此,我们依靠主要文献来讨论野生动物疾病的最新病例、宿主易感性的变化以及研究疾病生态学和进化的理论方法。虽然课程没有明确划分单元,但我们的前半部分重点关注进化主题,然后讨论与生态和环境相关的主题。我们进化部分的主题包括:防御策略的进化,包括宿主和病原体;权衡理论、红皇后动力学。然后我们过渡到关于物种相互作用的主题,例如:感染的顺序和时间、超级传播者的数学概念、疾病网络、多样性疾病关系、季节性和疾病动态以及微生物组。我们讨论由病毒、细菌和寄生虫引起的不同类型的感染和疾病的例子。我们整合了群落生态学的概念,以了解感染力随时间和空间的变化。疾病生态学和进化还提供使用 R 统计语言的主动学习活动。本课程有助于拓宽我们未来的医疗从业者和研究疫情的科学家的视野。讲师 Ana V. Longo,博士 生物学系 办公室地址:412 Carr Hall 办公时间:周四上午 9:30 - 10:30(见下文)。电话:352.273.4982 电子邮件:ana.longo@ufl.edu 公共和私人通信的首选方法 Canvas 邮件应用于所有与课程相关的通信。我不会回复来自外部帐户(例如 GMAIL)的电子邮件。注意:参与 Canvas 讨论被视为课堂内的公开对话。课程会议时间(第 2 和第 3 节)地点:CRR 0521 星期二:上午 8:30 – 上午 10:25 星期四:上午 8:30 – 上午 9:20 办公时间政策 临时办公时间为星期四上午 9:30 – 上午 10:30。我理解这些时间可能不适合每个人,因此请联系我以探索其他选择。请使用此网站安排您的会议:https://outlook.office365.com/owa/calendar/bookings- AnaLongoSpring2024@uflorida.onmicrosoft.com/bookings/
SARS-COV-2的迅速传播导致了Covid-19-19大流行和加速疫苗的发育,以防止病毒的传播并控制疾病。鉴于SARS-COV-2的持续高感染力和演变,人们对开发Covid-19-19的血清学测试有持续的兴趣来监测人群水平的免疫力。为了满足这一关键需求,我们使用SARS-COV-2的五种结构蛋白设计了基于纸张的多重垂直流程测定法(XVFA),检测IgG和IgM抗体以监测COVID-19免疫水平的变化。我们的平台不仅跟踪了纵向免疫水平,而且还根据IgG和IgM抗体的水平将COVID-19免疫分为三组:受保护,未受保护和感染。,我们在每次测试中<20分钟并行操作两个XVFA,以使用总计40 µL的人血清样品检测IgG和IgM抗体。 测定后,使用基于手机的自定义设计的光学读取器捕获了基于纸张的传感器面板的图像,然后由基于神经网络的Serodsignostic算法处理。 训练有素的血清诊断算法对疫苗接种或感染前后收集的血清样品进行了盲目测试,其精度为89.5%。 XVFA的竞争性能以及其可移植性,成本效益和快速运行,使其成为有希望的计算点 - 护理(POC)血清学测试,用于监测COVID-19的免疫力,并有助于及时决定Booster疫苗的管理和一般公共卫生政策,以保护弱势群体。并行操作两个XVFA,以使用总计40 µL的人血清样品检测IgG和IgM抗体。测定后,使用基于手机的自定义设计的光学读取器捕获了基于纸张的传感器面板的图像,然后由基于神经网络的Serodsignostic算法处理。训练有素的血清诊断算法对疫苗接种或感染前后收集的血清样品进行了盲目测试,其精度为89.5%。XVFA的竞争性能以及其可移植性,成本效益和快速运行,使其成为有希望的计算点 - 护理(POC)血清学测试,用于监测COVID-19的免疫力,并有助于及时决定Booster疫苗的管理和一般公共卫生政策,以保护弱势群体。
(非RTE)食物)发表于:2023年2月17日|截止日期:2023年4月18日,AIM 1新加坡食品局(SFA)正在寻求利益相关者和兴趣方面的反馈,涉及拟议的非准备食物(非RTE)食品的微生物学标准,该标准的目标是在2023年的第四季度生效。背景2非RTE食品是指根据食品法规第35条的RTE食品定义中未包括的食物。3某些非RTE食物,例如生肉,海鲜和鸡蛋,可能在初级生产和/或加工过程中被各种病原体污染,随后可以通过食用受污染的食物将这些病原体传播给人类。4尽管通常会食用非RTE食物,但某些产品(例如双壳类软体动物贝类和贝壳鸡蛋)经常被消费者煮熟,而其他产品可能直接被消费者直接使用而不进一步加热(例如,蛋黄酱中的巴氏蛋白鸡蛋产品)。如果此类非RTE食物中的病原体负荷不会降低到安全水平,则由于感染力低以及由许多这些病原体引起的疾病严重程度,它们的存在可能会引起食物安全问题。5 SFA目前采用一套非RTE肉类和肉类产品的微生物标准,可以在我们的网站2上找到。根据最新的科学证据,数据以及国际惯例和准则,对这些标准进行了定期审查,以保护消费者免受食源性病原体的侵害并满足食品行业不断变化的需求。这些提议的更改是我们常规审核过程的一部分。6在我们的评论中,SFA考虑了各种因素(例如发生和严重性。We have also taken reference from principles adopted by Codex and the International Commission on Microbiological Specifications for Foods (ICMSF) for establishing microbiological standards, as well 1 RTE food means “any article of food that is made available for sale for direct human consumption without the need for cooking or any other form of processing to eliminate, or reduce to a microbiological standard specified in the Eleventh Schedule, any pathogenic or other micro-organism of concern in the article食物”和“包括杯子面条,果汁亲切,南瓜或糖浆,粉末饮料和其他浓缩食品,这些食物本来可以在食用前用液体重组或稀释”。2 https://www.sfa.gov.sg/regulatory-limits/limits-for-incidental-constituents-in-food2 https://www.sfa.gov.sg/regulatory-limits/limits-for-incidental-constituents-in-food
潜在(无症状)结核病代表90%的感染,并反映肉芽肿内包含的小芽孢杆菌负担。活跃的疾病降低了10%,但在HIV或TNF-Alpha抑制剂治疗的患者中更频繁,通常代表先前感染的重新激活。典型的肺结核涉及与慢性咳嗽,屈曲,发烧,无意减肥和/或夜汗有关的上叶空化。非典型肺部参与表现出较低的叶片(有或没有气腔),胸膜效果和高淋巴结瘤,并且在免疫抑制中更常见。应始终评估患有肺部疾病的肺内结核病患者(例如,椎骨受累)。结核病的诊断仍然是一个重要的挑战。PPD皮肤测试和干扰素 - γ释放分析(IGRA)评估细胞介导的对TB抗原的反应,并用于诊断具有相似敏感性的潜在TB,但假阴性结果为20%。培养是诊断金标准,但需要3-8周。核酸扩增阳离子测试(NAATS)可以允许快速鉴定(即小时)结核病和电阻突变,这些突变预测具有灵敏度的多耐药性(MDR)TB,并且具有类似于培养的特异性城市。痰涂片允许快速量化杆菌,其负担与传染性相关。涂片阳性需要大约10,000个细菌/毫升。与培养物相比,单个痰液AFB涂片敏感60%。另外两个涂片增加了灵敏度增长了12%。巴奇·塞莱特 - 瓜素涂片阴性,培养阳性患者占肺结核病例的30-60%,不感染力较低,但仍造成10-20%的传播事件。标准治疗需要至少6个月的多药治疗。MDR TB被视为对异尼氏酶和利福平的抗性,每年造成> 450,000个感染;治疗依赖于可能不太可靠的二线代理。广泛的耐药性(XDR)结核病还具有对FL uoroquinolone的抗性和第二线可注射药物的耐药性,并具有高死亡率。鉴于治疗方案有限,死亡率高和公共卫生的影响,一些专家主张在生物培养单元中管理住院的XDR-TB的患者(请参阅第13章)。
过去几十年来,微电子行业一直在推动小型化理念的深入人心。更小的设备意味着更快的运行速度、更便携和更紧凑的系统。这种小型化趋势具有感染力,纳米技术和薄膜加工的进步已经蔓延到广泛的技术领域。这些技术进步对一些领域产生了重大影响,包括二极管激光器、光伏电池、热电材料和微机电系统 (MEMS)。这些设备的设计改进主要来自实验和宏观测量,例如整体设备性能。这些设备和材料的微观特性的大多数研究都集中在电气和/或微观结构特性上。目前,许多热问题在很大程度上被忽视,限制了现代设备的性能。因此,这些材料和设备的热性能对于高科技系统的持续发展至关重要。人们对薄膜能量传输机制的了解需求催生了一个新的研究领域,即微尺度传热。微尺度传热只是在必须考虑单个载体或连续模型失效时对热能传递的研究。传热的连续模型经典地是能量守恒定律与热传导的傅立叶定律的结合。类似地,当连续流体力学模型不足以解释某些现象时,就出现了“气体动力学”的研究。微尺度传热领域具有一些惊人的相似之处。相似之处之一是方法论。通常,第一次建模尝试是修改连续模型,以便将微尺度因素考虑在内。更常见且稍微困难的方法是应用玻尔兹曼传输方程。最后,当这两种方法都失败时,通常采用计算详尽的分子动力学方法。下面将更详细地讨论这三种方法和具体应用。图 18.1 演示了电子(金属薄膜中的主要热载体)散射的四种不同机制。所有这些散射机制对于微尺度传热的研究都很重要。块体金属中电子的平均自由程通常在 10 到 30 纳米的数量级上,其中电子晶格散射占主导地位。然而,当薄膜厚度与平均自由程数量级相同时,边界散射就变得很重要。这被称为尺寸效应,因为薄膜的物理尺寸会影响传输特性。薄膜可以使用多种方法并在各种条件下制造。这可能会对薄膜的微观结构产生严重影响,进而影响缺陷和晶界散射。最后,当被超短脉冲加热时,电子系统会变得非常热,以至于电子-电子散射会变得非常明显。因此,微尺度传热需要考虑微观能量载体和各种可能的散射机制。
对未来麻疹感染的反应。一旦被感染,个体就会产生强大的免疫力,这是终生的。这对于我目前将要描述的建模尤其重要。有一种出色的疫苗,该疫苗于1963年首次开发。尽管如此,某些国家仍然存在较高的疾病负担,而疫苗犹豫是一个持续的问题。在世界许多地方,长期以来,医生一直被要求报告麻疹病例。例如,在英格兰和威尔士,我们有记录可以追溯到1940年代。流行病通常在常规周期中蜡和减弱。周期在地理上相当同步。例如,当伦敦有流行病时,附近有类似的爆发。我们还可以看到一些“感染波”远离伦敦和其他大城市的证据。我们可以使用数学模型来解释许多这些模式。模型是什么意思?这是一种尝试捕获系统的关键生物学特征来解释观察到的模式。理想情况下,我们只专注于绝对必要的细节。图2是一幅捕获麻疹感染自然病史的非常简单的模型。当他们出生时,婴儿可以对母亲免疫。这已经减少了几个月。然后,他们容易受到感染的影响,并可以通过与感染者接触获得感染。在感染期间,他们会感染其他人。几周后,大多数人康复,不再具有感染力。3。他们的免疫系统学会了如何识别病毒,如果再次暴露于病毒,它们将不再患有严重的疾病或传播病毒。我们可以通过数学上的疾病阶段在所谓的易感感染感染恢复的阶段或流行病的模型中表达这种进展。该模型中的一个关键参数是传输速率,通常通过繁殖比(由感染者引起的次要病例的数量)来衡量。我们可以使用这个简单的模型来解释案例通过时间的动态,如图我们从图表的左侧以红色指示的一个感染者开始,人口中的其他所有人都易感,以黑色为例(图。3)。感染者将这种疾病交给其他几个人,然后他们将其传递给,这会导致病例数量迅速增加。这很快耗尽了易感人群,随着人们的康复,它们变得免疫,以绿色显示(图3)。随着易感人数的数量减少,流行病的速度和案件数量开始下降。每个受感染的人将疾病传递到越来越少的人,因为与他们接触的越来越多的人免疫。最终,我们最终与大多数人感染了这种疾病并康复。没有足够的易感来继续流行,因此它消失了。这是最简单的模型。实际上,事情可能会更加复杂。例如,出生会产生新的易感人士。当它们足够堆积时,我们可能会有另一种流行病。
丙型肝炎血清学测试抗HBC 1丙型肝炎的总抗体核心抗原抗HBS 2丙型肝炎表面抗体这种测试是根据响应于乙型肝炎的表面蛋白而形成的抗体。阳性测试显示对HBV感染的免疫反应,并根据疫苗接种或从实际的乙型肝炎感染中恢复而产生。Hbsag肝炎表面抗原丙型肝炎病毒的表面蛋白被用作检测感染的标记。如果该血液检查为阳性,则存在丙型肝炎病毒。HBV DNA丙型肝炎病毒DNA是病毒载量的标志物,反映了病毒复制。高水平的HBV DNA意味着患者的血液和体液非常感染力。HBV DNA通常以每毫升国际单位(IU/mL)测量,用于评估和监测慢性HBV感染患者的治疗。乙型肝炎暴露后预防HBIG肝炎B免疫球蛋白A药物作为“暴露后”治疗,可预防HBV。 这意味着在某人暴露于潜在感染的血液或感染的身体液后,就会给出HBIG,这可能包括但不限于与血液接触或通过针刺的婴儿接触,即受感染的怀孕者出生的婴儿,以及通过性接触或与受感染者的性接触或亲密的家庭接触。 疫苗接种后测试PVST疫苗接种后血清学测试PVST有助于识别受HBV感染的孕妇出生的婴儿,他们可能对初始乙型肝炎B疫苗系列没有足够的免疫反应,并且可能需要额外的疫苗接种。乙型肝炎暴露后预防HBIG肝炎B免疫球蛋白A药物作为“暴露后”治疗,可预防HBV。这意味着在某人暴露于潜在感染的血液或感染的身体液后,就会给出HBIG,这可能包括但不限于与血液接触或通过针刺的婴儿接触,即受感染的怀孕者出生的婴儿,以及通过性接触或与受感染者的性接触或亲密的家庭接触。疫苗接种后测试PVST疫苗接种后血清学测试PVST有助于识别受HBV感染的孕妇出生的婴儿,他们可能对初始乙型肝炎B疫苗系列没有足够的免疫反应,并且可能需要额外的疫苗接种。PVST还可以尽早确定HBV感染的婴儿。CDC建议,由HBV感染的孕妇出生的婴儿接受PVST,包括两项HBV血清学检查:A乙型肝炎表面抗原(HBSAG)测试和乙型肝炎表面抗原(抗HBS)抗体在9-12个月中测试(或在9-12岁时测试)(或在最终延迟的系列延迟的系列延迟de dorte dection系列)。来源:乙型肝炎基础:乙型肝炎血液检查(HEPB.org)围产期疫苗后血清学检查指南|肝炎B |疾病预防症中肝炎的临床测试和诊断|肝炎B | CDC
冠状病毒疾病2019(Covid-19)引起了高度感染力的严重急性呼吸道综合征2(SARS-COV-2),继续是前所未有的全球健康危机[1]。其相关的发病率和死亡率导致了当前正在使用的不同SARS-COV-2疫苗的快速发展,而其他人仍在开发或处于临床试验的不同阶段。截至2021年3月18日,大约13次Covid-19-19疫苗已被批准在不同的国家使用,而其他几个疫苗正处于随机临床试验的不同阶段[2]。有趣的是,更多的人仍在出现,以提高功效,尤其是针对SARS-COV-2的新兴变体[3]。目前,尚无公认的共同治疗方法,因此,疫苗仍然是预防疾病的最重要的支点[4,5]。与许多其他疫苗一样,Covid-19疫苗的作用机理是基于主动免疫(例如活衰减,病毒载体和DNA/RNA疫苗)或被动免疫(例如单克隆/多克隆抗体)[6]。尽管在疫苗开发中取得了重大进展,但对安全性和有效性的担忧仍然是需要进一步研究的挑战。Irwin和Nkengasong的报告表明,所有人类中有70%必须被接种以消除Covid-19 [7]。在尼日利亚,尼日利亚疾病控制中心(NCDC)旨在接种尼日利亚人口的40%,并希望在2022年底之前取得70%的疫苗接种阈值,以消除Covid-19 [8]。截至2022年6月7日,全球总共服用了11,854,673,610个胶水剂量[9]。在尼日利亚,截至2022年5月29日,尼日利亚人约30,680,510(占人口的14.9%)至少服用了1剂,而20,096,868(占人口9.7%的人口的9.7%)服用了2剂2剂,因此已完全疫苗接种[10]。因此,尼日利亚的Covid-19疫苗的摄取仍然很低。关于宿主免疫反应对Covid-19的报告的雪崩及分子技术的进步促进了COVID-19-19S疫苗的快速开发。但是,缺乏有关SARS-COV-2感染引起的免疫力和疫苗诱导的免疫力之间可能差异的信息。因此,确定接种和未接种疫苗的个体的抗体反应以确定获得牛群免疫的可能性是临床重要性的。天然SARS-COV-2感染期间抗体产生的主要抗原是峰值(S)和核素蛋白(N)蛋白[11]。在感染SARS-COV-2之后;幼稚的B细胞通过抗原识别和CD4 + T细胞激活激活。这种激活导致一系列事件导致抗体和记忆B细胞的产生。可用的报告显示,大多数SARS-COV-2患者在患有病毒特异性IgG,IgA和IgM症状发作后不久同时发育[12-16]。但是,这种血清转化可能分阶段发生。 IGM血清转换早于IgG,IgG血清转化早于IgM和IgM和IgG的同步血清转换[12,17,18]。此外,血清转化的中位时间也有所不同[19]。Iyer等。 [17]和Long等。 [12]报告说,血清转化的中位时间在囊肿后11到13天之间(PSO)。 另外,Roéltgen等人。 [18]报告说,抗S受体结合结构域(RBD)IGM,IgG和IgA的住院患者的血清转化率达到了最大Iyer等。[17]和Long等。[12]报告说,血清转化的中位时间在囊肿后11到13天之间(PSO)。另外,Roéltgen等人。[18]报告说,抗S受体结合结构域(RBD)IGM,IgG和IgA的住院患者的血清转化率达到了最大