机器人及时通过传感器数据构建持久,准确且可操作的模型的能力是自主操作的范围。在将世界表示为点云可能足以进行本地化时,避免障碍物需要更密集的场景表示形式。另一方面,更高级别的语义信息通常对于分解必要的步骤来完成一项复杂的任务,例如烹饪,自主是至关重要的。因此,迫在眉睫的问题是,手头机器人任务的合适场景表示是什么?这项调查提供了对关键方法和框架的全面回顾,这在机器人空间感知领域推动了进步,并特别关注了代表的历史演变和当前的趋势。通过将场景建模技术分类为三种主要类型(公式,公式和指标 - 语言流行),我们讨论了空间启示框架正在从构建世界的纯几何模型转变为更高级的数据结构的方式,这些模型包括更高级别的概念,例如对象实例和位置的概念。特别重点是实时同时定位和映射(SLAM)的方法,它们与深度学习的集成,以增强了鲁棒性和场景的理解,以及它们处理场景动态性的能力,作为当今驾驶Robotics研究的一些最热门的主题。我们在讨论方面的挑战和未来的研究方向的讨论中进行了结论,以建立适合长期自治的强大而可扩展的空间感知系统。
该项目的数据将有助于美国海军完成其使命,同时通过改进环境标准中使用的听觉加权函数来保护处于危险中的海洋哺乳动物。由于当前的听觉加权函数源自长持续时间的纯音,可能无法推广到其他类型的声音,因此开发持续时间相关和带宽相关的听觉加权函数将支持对广泛信号的感知响度估计。定义虎鲸的感知响度和信号持续时间之间的关系还将为其他大型齿鲸(如喙鲸和抹香鲸)提供数据,因为虎鲸目前是该群体的最佳听觉替代品。
科学素养(Montecalvo & Larkin,2018)。然而,普通民众支持国家太空计划,美国(Pew,2019)和中国(Hines,2022)等国家的研究表明就是如此。此外,研究发现,人们大大高估了公共部门在太空探索方面的支出(ESA,2018)。另一个重要方面是学生的参与意愿。研究表明,学生普遍对学习太空的可能性持积极态度(Bergstrom 等人,2016)。学生认为物理等太空学科对他们未来的职业生涯很有趣,也很有用(Reid & Skryabina,2002),空间科学应该在一个人的整体常识中占有更重要的地位(Ottavianelli & Good,2002)。尽管如此,太空探索也被认为是奢侈和不必要的。太空研究被认为很困难,只适合最优秀和最聪明的人(Bergstrom 等人,2016)。关于空间科学的另一个经常被提及的误解是该学科的狭隘观点。它主要与天文学、物理学或机械工程有关,而这一领域涉及更多学科,例如生物学、地质学、信息学、电信、医学、心理学、法律等。人们认为空间领域以男性为主,由智力超群的人占据,大多数人无法进入。这种看法可能会造成一种同质环境,只有特定类型的人才能代表这一领域。为了使空间更具包容性、可及性和社会相关性,有必要对这一主题进行进一步研究。在本文中,我们希望展示我们在大学生中进行的混合方法研究的结果。这项研究旨在确定人们对太空探索和参与太空的总体态度。我们还调查了性别差异。
,QWURGXFWLRQ口语技术的域范围从语音输入和输出系统到复杂的理解和生成系统,包括具有广泛差异的复杂性(例如自动命令机)和多语言系统(例如自动对话和翻译系统)的多模态系统。对此类系统的标准和评估方法的定义涉及高度特定的口语语料库和词典资源的规范和开发,以及测量和评估工具。在开始时,这些领域的标准是从以前在许多欧洲和国家项目中建立的口语社区中的共识得出的,它参考了美国和日本的重要举措。主要是SAM项目(集中在组件技术评估和语料库创建上),SQALE(用于大型词汇系统评估)以及日d和Sundial和Sunstar(用于多模式系统)过去和现在的项目在评估和资源领域具有重要的产量,包括ARS,Relator,Onomastica和SpeechDat,以及德国的Verbmobil等主要国家项目和研究计划。
对自动驾驶汽车的抽象协作感知旨在克服个人感知的局限性。在多个代理之间共享信息,可以解决多个问题,例如遮挡,传感器范围限制和盲点。最大的挑战之一是在受到束缚绩效和沟通带宽之间找到正确的权衡。本文提出了一种新的合作感知管道,该管道基于Whate2Comm算法具有优化策略,以减少几种代理之间的传输数据量。这些策略涉及编码器部分中的数据减少模块,以有效地选择最重要的特征,并以V2X方式交换消息的新代表,该消息将考虑信息及其位置的向量而不是高维特征图。在两个模拟数据集(OPV2V和V2XSET)上评估我们的方法。数据集上的AP@50的准确性大约为7%,并且在V2XSET和OPV2V上分别降低了89.77%和92.19%。
深度卷积神经网络(DCNN)的预训练在视觉情绪分析(VSA)领域起着至关重要的作用。大多数提出的方法都采用在大型物体分类数据集(即 ImageNet)上预训练的现成的主干网络。虽然与随机初始化模型状态相比,它在很大程度上提高了性能,但我们认为,仅在 ImageNet 上进行预训练的 DCNN 可能过于注重识别物体,而未能提供情绪方面的高级概念。为了解决这个长期被忽视的问题,我们提出了一种基于人类视觉情绪感知(VSP)机制的面向情绪的预训练方法。具体而言,我们将 VSP 的过程分为三个步骤,即刺激接受、整体组织和高级感知。通过模仿每个 VSP 步骤,我们通过设计的情绪感知任务分别对三个模型进行预训练,以挖掘情绪区分的表示。此外,结合我们精心设计的多模型融合策略,从每个感知步骤中学习到的先验知识可以有效地转移到单个目标模型中,从而获得显着的性能提升。最后,我们通过大量实验验证了我们提出的方法的优越性,涵盖了从单标签学习(SLL)、多标签学习(MLL)到标签分布学习(LDL)的主流 VSA 任务。实验结果表明,我们提出的方法在这些下游任务中取得了一致的改进。我们的代码发布在 https://github.com/tinglyfeng/sentiment_pretraining 。
摘要:从表面上看,行为科学和物理学似乎是两个不同的研究领域。然而,对他们解决的问题进行了更仔细的研究表明,它们彼此唯一相关。以量子思维,认知和决策理论为例,这种独特的关系是本章的主题。调查当前的学术期刊论文和学术专着,我们提出了量子力学在人类感知,行为和决策现代研究中的作用的另一种愿景。为此,我们主要旨在回答“如何”问题,故意避免复杂的数学概念,但要开发一种技术简单的计算代码,读者可以修改以设计自己的量子启发的模型。我们还介绍了计算代码的应用并概述几个合理的方案的几个实践示例,其中量子模型基于提议的DO-Yourandself Model套件可以帮助了解个人和社会群体的行为之间的差异。
抑郁症是全球第三大致残原因,已成为影响所有年龄段人群的重大公共卫生问题,对身心健康产生深远的负面影响。在美国,经历重度抑郁发作的一生中风险接近 30% (1,2)。在此背景下,抑郁家庭环境中的经历在塑造后代对抑郁和焦虑症的脆弱性和适应力方面起着至关重要的作用 (3)。因此,研究越来越多地关注家庭动态和抑郁症之间的复杂相互作用,特别强调照顾者的情绪健康对儿童心理发展的影响。照顾者的焦虑和压力被认为是可能引发或加剧抑郁症状的关键因素 (4),此外,父母的抑郁和焦虑有可能跨代传递 (5)。例如,Carly J. Johnco 和同事发现了焦虑和抑郁代际传递的证据,并指出父母的排斥和缺乏温暖会显著增加儿童患抑郁症的风险(6)。照顾者的焦虑和压力等心理健康问题会对家庭环境产生不利影响,从而可能增加后代患抑郁症的风险。有多种机制可以阐明照顾者的压力如何影响儿童:1.家庭环境对神经发育的影响:Nicole R. Bush 和同事发现,家庭社会经济地位、家庭结构和环境、养育行为和互动方式、父母的心理健康和功能以及父母的物质使用等因素都会影响儿童的大脑发育,进而影响他们患精神疾病的风险(7);2.情绪感染:儿童可能会内化照顾者的情绪状态,导致抑郁症状的出现。行为模仿:儿童可能会采用照料者模仿的适应不良的应对策略。例如,Emily L. Robertson 及其同事观察到,自 COVID-19 疫情爆发以来,照料者的焦虑、愤怒、悲伤/抑郁情绪增加,饮食和睡眠模式发生变化,对未来的希望减少,冲突加剧,这些因素可以预测一个月后其子女脾气问题、冲突和注意力缺陷多动障碍 (ADHD) 症状的严重程度 ( 8 )。3. 育儿实践受损:照料者的焦虑会破坏育儿行为,导致过度保护、管教不一致或忽视,进而导致儿童情绪失调和抑郁症状。由于照料者情感缺失导致亲子关系恶化,进一步增加了儿童患抑郁症的可能性 ( 9 )。4.社会经济和环境压力源:照料者的压力往往伴随着社会和经济压力,这些压力会通过限制儿童获得资源和机会而加剧上述影响(10、11)。尽管有大量的研究,但大多数研究都是在西方背景下进行的,主要关注父母情绪对儿童情绪健康的影响。关于照料者压力和焦虑影响的研究明显不足
当前的感知模型在很大程度上取决于资源密集型数据集,从而促使需要创新。通过从各种注释中构造图像输入来利用综合数据的最新进展,证明对下游任务有益。虽然先前的方法已单独解决了生成和感知模型,但首次降低了两者的谐调,从而解决了为感知模型生成有效数据的挑战。通过感知模型增强图像发生,我们引入了感知感知损失(P.A.损失)通过细分,提高质量和可控性。为了提高特定感知模型的性能,我们的方法通过提取和利用感知意识来定制数据(P.A.attr)在一代中。对象检测任务的实验结果突出显示了detDiffusion的统治性能,建立了布局引导的新最新作品。此外,降低的图像合成可以有效地增强训练数据,从而显着增强下游检测性能。