科学素养(Montecalvo & Larkin,2018)。然而,普通民众支持国家太空计划,美国(Pew,2019)和中国(Hines,2022)等国家的研究表明就是如此。此外,研究发现,人们大大高估了公共部门在太空探索方面的支出(ESA,2018)。另一个重要方面是学生的参与意愿。研究表明,学生普遍对学习太空的可能性持积极态度(Bergstrom 等人,2016)。学生认为物理等太空学科对他们未来的职业生涯很有趣,也很有用(Reid & Skryabina,2002),空间科学应该在一个人的整体常识中占有更重要的地位(Ottavianelli & Good,2002)。尽管如此,太空探索也被认为是奢侈和不必要的。太空研究被认为很困难,只适合最优秀和最聪明的人(Bergstrom 等人,2016)。关于空间科学的另一个经常被提及的误解是该学科的狭隘观点。它主要与天文学、物理学或机械工程有关,而这一领域涉及更多学科,例如生物学、地质学、信息学、电信、医学、心理学、法律等。人们认为空间领域以男性为主,由智力超群的人占据,大多数人无法进入。这种看法可能会造成一种同质环境,只有特定类型的人才能代表这一领域。为了使空间更具包容性、可及性和社会相关性,有必要对这一主题进行进一步研究。在本文中,我们希望展示我们在大学生中进行的混合方法研究的结果。这项研究旨在确定人们对太空探索和参与太空的总体态度。我们还调查了性别差异。
抽象目的:它的目的是探索自我效能感和财务焦虑水平在健康和旅游学生的生活满意度对大脑流失看法的影响中的串行调解作用。方法:在这项描述性研究中,在Antalya,Türkiye和串行中介模型和回归分析中,使用四个量表,生命满意度,自我效能,经济焦虑量(自我满意度,自我效率,财务焦虑)收集了403名参与者的数据。结果:根据数据,83.3%的旅游业,74.8%的护理,56.5%的牙科和55.7%的医学院学生表示他们正在考虑毕业后正在迁移。生活满意度对自我效能感和对财务焦虑的负面影响产生了积极影响,对财务焦虑的自我效能感具有积极影响。生命满意度对大脑流失有直接的负面影响,而自我效能感和财务焦虑对大脑排水产生了积极影响。学生对生活满意度的看法是大脑流失意图的重要先决条件,自我效能感和财务焦虑对这种影响具有中介作用。最影响其迁移意图的因素是脑力流失态度和教职员工。财务焦虑,自我效能感和出国意图是影响大脑流失看法的变量。结论:本研究中表达的移民意图和大脑消耗态度预测,对该国的医疗保健和旅游服务的可持续性构成了直接和严重的威胁。需要采取干预措施,例如改善财务焦虑和提供生活满意度。关键词:脑力消耗,财务焦虑,生活满意度,移民,自我效能,串行模型分析,学生
对自动驾驶汽车的抽象协作感知旨在克服个人感知的局限性。在多个代理之间共享信息,可以解决多个问题,例如遮挡,传感器范围限制和盲点。最大的挑战之一是在受到束缚绩效和沟通带宽之间找到正确的权衡。本文提出了一种新的合作感知管道,该管道基于Whate2Comm算法具有优化策略,以减少几种代理之间的传输数据量。这些策略涉及编码器部分中的数据减少模块,以有效地选择最重要的特征,并以V2X方式交换消息的新代表,该消息将考虑信息及其位置的向量而不是高维特征图。在两个模拟数据集(OPV2V和V2XSET)上评估我们的方法。数据集上的AP@50的准确性大约为7%,并且在V2XSET和OPV2V上分别降低了89.77%和92.19%。
感知在各种机器人应用中起着至关重要的作用。但是,现有的良好的数据集偏向自动驾驶场景,而未标记的SLAM数据集则很快过于拟合,并且通常缺乏环境和域变化。为了扩大这些领域的边界,我们介绍了一个名为MCD(Multi-campus数据集)的全面数据集,其中包含各种感应方式,高准确的地面真相以及在三个欧亚大学的欧亚大学校园内的挑战性环境。MCD包括CCS(经典的圆柱旋转)和NRE(非重复性环球)LIDAR,高质量的IMU(惯性测量单元),相机和UWB(URWB(Ultra-Wideband))传感器。更重要的是,在开创性的努力中,我们引入了29堂课的语义注释,超过59k稀疏的nre lidar扫描
分割算法的疗效经常因拓扑错误,连接中断和空隙等拓扑错误而受到损害。为了解决这一问题,我们引入了一种新颖的损失函数,即拓扑 - 意识局灶性损失(TAFL),该功能将基于基于地面真实和预测段蒙版的持久性图表之间的拓扑结构术语与拓扑结构术语结合在一起。通过实施与地面真理相同的拓扑结构,拓扑的约束可以有效地解决拓扑结构,而焦点损失可以解决阶级失衡。我们首先是从地面真理和预测的分割掩模的过滤的立方复合物中构造持久图。随后,我们利用sindhorn-knopp算法来确定两个持久图之间的最佳运输计划。最终的运输计划最小化了将质量从一个分布到另一个分布的运输成本,并在两个持久图中的点之间提供了映射。然后,我们根据该旅行计划计算沃斯堡的距离,以测量地面真相和预测的面具之间的拓扑差异。我们通过训练3D U-NET与MICCAI脑肿瘤分割(BRATS)CHALLENE验证数据集来评估我们的方法,该数据需要准确地分割3D MRI扫描,从而整合各种方式,以精确鉴定和跟踪恶性脑肿瘤。然后,我们证明,通过添加拓扑约束作为惩罚项,通过将焦点损失正规化来提高分段性能的质量。
当前的感知模型在很大程度上取决于资源密集型数据集,从而促使需要创新。通过从各种注释中构造图像输入来利用综合数据的最新进展,证明对下游任务有益。虽然先前的方法已单独解决了生成和感知模型,但首次降低了两者的谐调,从而解决了为感知模型生成有效数据的挑战。通过感知模型增强图像发生,我们引入了感知感知损失(P.A.损失)通过细分,提高质量和可控性。为了提高特定感知模型的性能,我们的方法通过提取和利用感知意识来定制数据(P.A.attr)在一代中。对象检测任务的实验结果突出显示了detDiffusion的统治性能,建立了布局引导的新最新作品。此外,降低的图像合成可以有效地增强训练数据,从而显着增强下游检测性能。
最近在操纵和运动领域取得了显着进展,但移动操作仍然是一个长期以来的挑战。与运动或静态操纵相比,移动系统必须在非结构化和动态环境中可行的多种长距离任务。尽管应用程序广泛且有趣,但在开发这些系统(例如基础和手臂之间的协调)时,有很多挑战,依靠在船上感知到感知和与环境互动,最重要的是,同时整合了所有这些部分。先前的作品使用模块化技能来解决问题,以使其动机和操纵被微不足道地捆绑在一起。这引起了多个限制
尽管基于3D的GAN技术已成功地应用于具有各种属性的照片真实的3D图像,同时保持视图一致性,但很少有关于如何罚款3D impersimens的研究,而不会限制其属性特定对象的特定对象类别。为了填补此类研究空白,我们提出了一个基于3D的GAN代表的新型图像操纵模型,以对特定的自定义贡献进行细粒度控制。通过扩展最新的基于3D的GAN模型(例如,EG3D),我们的用户友好定量操作模型可以实现对3D操作多属性数量的精细而归一化的控制,同时实现了视图一致性。我们通过各种实验验证了我们提出的技术的有效性。
近年来,多层感知器 (MLP) 成为计算机视觉任务领域的研究热点。由于没有归纳偏差,MLP 在特征提取方面表现良好并取得了惊人的效果。然而,由于其结构简单,其性能高度依赖于局部特征通信机制。为了进一步提高 MLP 的性能,我们引入了脑启发神经网络的信息通信机制。脉冲神经网络 (SNN) 是最著名的脑启发神经网络,在处理稀疏数据方面取得了巨大成功。SNN 中的泄漏积分和触发 (LIF) 神经元用于在不同时间步骤之间进行通信。在本文中,我们将 LIF 神经元的机制合并到 MLP 模型中,以在不增加 FLOP 的情况下实现更好的准确率。我们提出了一种全精度 LIF 操作来在块之间进行通信,包括不同方向的水平 LIF 和垂直 LIF。我们还建议使用组 LIF 来提取更好的局部特征。借助 LIF 模块,我们的 SNN-MLP 模型在 ImageNet 数据集上分别仅使用 4.4G、8.5G 和 15.2G FLOP 就实现了 81.9%、83.3% 和 83.5% 的 top-1 准确率,据我们所知,这是最先进的结果。源代码将在 https://gitee.com/mindspore/models/tree/master/research/cv/snn mlp 上提供。
,QWURGXFWLRQ口语技术的域范围从语音输入和输出系统到复杂的理解和生成系统,包括具有广泛差异的复杂性(例如自动命令机)和多语言系统(例如自动对话和翻译系统)的多模态系统。对此类系统的标准和评估方法的定义涉及高度特定的口语语料库和词典资源的规范和开发,以及测量和评估工具。在开始时,这些领域的标准是从以前在许多欧洲和国家项目中建立的口语社区中的共识得出的,它参考了美国和日本的重要举措。主要是SAM项目(集中在组件技术评估和语料库创建上),SQALE(用于大型词汇系统评估)以及日d和Sundial和Sunstar(用于多模式系统)过去和现在的项目在评估和资源领域具有重要的产量,包括ARS,Relator,Onomastica和SpeechDat,以及德国的Verbmobil等主要国家项目和研究计划。
