我们介绍C ONTITION- WARE神经N ETWORK(CAN),这是一种将控制添加到图像生成模式中的新方法。与先前的条件控制方法并行,可以通过动态降低神经网络的重量来控制图像生成过程。这是通过引入条件感知的重量产生模式来实现的,该模块会根据输入条件为卷积/线性层生成条件重量。我们测试可以在Coco上的ImageNet和文本对图像生成上生成类别图像的生成。可以始终如一地为包括DIT和UVIT在内的扩散变压器模型提供显着改进。特别是,Ca n与有效的T(CAT)结合在Imagenet 512×512上达到2.78 FID,超过DIT-XL/2,同时每个采样步骤需要少52×MAC。
尽管最近的研究通过深度学习技术突破了极限,但从 3D 点云中进行物体检测仍然是一项具有挑战性的任务。由于严重的空间遮挡和点密度随到传感器距离的固有变化,同一物体在点云数据中的外观会有很大变化。因此,设计针对这种外观变化的鲁棒特征表示是 3D 物体检测方法的关键问题。在本文中,我们创新地提出了一种类似域自适应的方法来增强特征表示的鲁棒性。更具体地说,我们弥合了特征来自真实场景的感知域和特征从由富含详细信息的非遮挡点云组成的增强场景中提取的概念域之间的差距。这种领域自适应方法模仿了人脑在进行物体感知时的功能。大量实验表明,我们简单而有效的方法从根本上提高了 3D 点云物体检测的性能并取得了最先进的结果。
摘要 本研究的目的是研究电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对患有特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视觉感知的影响。本研究的调查是半实验研究,前测和后测采用单组,统计方法为混合方差分析。统计人群是德黑兰复活四所女孩 Maad 小学三年级、四年级、五年级、六年级的全部 216 名学生,其中 10 人通过随机抽样和可用抽样进行测量。为了收集信息,使用了(Susan pickering 工作记忆测试、Visconsin 卡片分类测试和 Frostig 测试)。结果表明,特定学习障碍(阅读、写作、数学)学生与正常学生在工作记忆和空间视知觉等方面存在差异,而电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视知觉有影响。 关键词:工作记忆 空间视知觉 学习障碍 电脑游戏 引言 特定学习障碍是指一组异质性障碍,其特征是在言语、阅读、写作、答题或数学技能的习得和使用上存在显著差异。学习障碍是一种在使用口头或书面语言方面存在一种或多种显著障碍,在听、想、说、读、写、拼写或进行数学计算的能力上存在缺陷。特定学习障碍是一种影响儿童接收、处理、分析或存储信息能力的问题。这种障碍会使儿童难以阅读、写作、拼写或解决数学问题 [1]。学生特定学习障碍的主要特征包括:自然智力水平、学习成绩低于预期、学习速度慢、认知发展、教育基础重复、学习水平差异、不同学习、课程学习。能力和技能之间存在显著差异,注意力范围狭窄[2]。换句话说,他们尽管智力正常,却无法学习,虽然成长的各个方面与生物成熟度有直接关系,但一般认为生物和非生物因素都可以发挥作用[3]。人类的学习工具随着环境而变化。如果今天的儿童和青少年
分割算法的疗效经常因拓扑错误,连接中断和空隙等拓扑错误而受到损害。为了解决这一问题,我们引入了一种新颖的损失函数,即拓扑 - 意识局灶性损失(TAFL),该功能将基于基于地面真实和预测段蒙版的持久性图表之间的拓扑结构术语与拓扑结构术语结合在一起。通过实施与地面真理相同的拓扑结构,拓扑的约束可以有效地解决拓扑结构,而焦点损失可以解决阶级失衡。我们首先是从地面真理和预测的分割掩模的过滤的立方复合物中构造持久图。随后,我们利用sindhorn-knopp算法来确定两个持久图之间的最佳运输计划。最终的运输计划最小化了将质量从一个分布到另一个分布的运输成本,并在两个持久图中的点之间提供了映射。然后,我们根据该旅行计划计算沃斯堡的距离,以测量地面真相和预测的面具之间的拓扑差异。我们通过训练3D U-NET与MICCAI脑肿瘤分割(BRATS)CHALLENE验证数据集来评估我们的方法,该数据需要准确地分割3D MRI扫描,从而整合各种方式,以精确鉴定和跟踪恶性脑肿瘤。然后,我们证明,通过添加拓扑约束作为惩罚项,通过将焦点损失正规化来提高分段性能的质量。
深度卷积神经网络(DCNN)的预训练在视觉情绪分析(VSA)领域起着至关重要的作用。大多数提出的方法都采用在大型物体分类数据集(即 ImageNet)上预训练的现成的主干网络。虽然与随机初始化模型状态相比,它在很大程度上提高了性能,但我们认为,仅在 ImageNet 上进行预训练的 DCNN 可能过于注重识别物体,而未能提供情绪方面的高级概念。为了解决这个长期被忽视的问题,我们提出了一种基于人类视觉情绪感知(VSP)机制的面向情绪的预训练方法。具体而言,我们将 VSP 的过程分为三个步骤,即刺激接受、整体组织和高级感知。通过模仿每个 VSP 步骤,我们通过设计的情绪感知任务分别对三个模型进行预训练,以挖掘情绪区分的表示。此外,结合我们精心设计的多模型融合策略,从每个感知步骤中学习到的先验知识可以有效地转移到单个目标模型中,从而获得显着的性能提升。最后,我们通过大量实验验证了我们提出的方法的优越性,涵盖了从单标签学习(SLL)、多标签学习(MLL)到标签分布学习(LDL)的主流 VSA 任务。实验结果表明,我们提出的方法在这些下游任务中取得了一致的改进。我们的代码发布在 https://github.com/tinglyfeng/sentiment_pretraining 。
科学素养(Montecalvo & Larkin,2018)。然而,普通民众支持国家太空计划,美国(Pew,2019)和中国(Hines,2022)等国家的研究表明就是如此。此外,研究发现,人们大大高估了公共部门在太空探索方面的支出(ESA,2018)。另一个重要方面是学生的参与意愿。研究表明,学生普遍对学习太空的可能性持积极态度(Bergstrom 等人,2016)。学生认为物理等太空学科对他们未来的职业生涯很有趣,也很有用(Reid & Skryabina,2002),空间科学应该在一个人的整体常识中占有更重要的地位(Ottavianelli & Good,2002)。尽管如此,太空探索也被认为是奢侈和不必要的。太空研究被认为很困难,只适合最优秀和最聪明的人(Bergstrom 等人,2016)。关于空间科学的另一个经常被提及的误解是该学科的狭隘观点。它主要与天文学、物理学或机械工程有关,而这一领域涉及更多学科,例如生物学、地质学、信息学、电信、医学、心理学、法律等。人们认为空间领域以男性为主,由智力超群的人占据,大多数人无法进入。这种看法可能会造成一种同质环境,只有特定类型的人才能代表这一领域。为了使空间更具包容性、可及性和社会相关性,有必要对这一主题进行进一步研究。在本文中,我们希望展示我们在大学生中进行的混合方法研究的结果。这项研究旨在确定人们对太空探索和参与太空的总体态度。我们还调查了性别差异。
对自动驾驶汽车的抽象协作感知旨在克服个人感知的局限性。在多个代理之间共享信息,可以解决多个问题,例如遮挡,传感器范围限制和盲点。最大的挑战之一是在受到束缚绩效和沟通带宽之间找到正确的权衡。本文提出了一种新的合作感知管道,该管道基于Whate2Comm算法具有优化策略,以减少几种代理之间的传输数据量。这些策略涉及编码器部分中的数据减少模块,以有效地选择最重要的特征,并以V2X方式交换消息的新代表,该消息将考虑信息及其位置的向量而不是高维特征图。在两个模拟数据集(OPV2V和V2XSET)上评估我们的方法。数据集上的AP@50的准确性大约为7%,并且在V2XSET和OPV2V上分别降低了89.77%和92.19%。
抽象目的:它的目的是探索自我效能感和财务焦虑水平在健康和旅游学生的生活满意度对大脑流失看法的影响中的串行调解作用。方法:在这项描述性研究中,在Antalya,Türkiye和串行中介模型和回归分析中,使用四个量表,生命满意度,自我效能,经济焦虑量(自我满意度,自我效率,财务焦虑)收集了403名参与者的数据。结果:根据数据,83.3%的旅游业,74.8%的护理,56.5%的牙科和55.7%的医学院学生表示他们正在考虑毕业后正在迁移。生活满意度对自我效能感和对财务焦虑的负面影响产生了积极影响,对财务焦虑的自我效能感具有积极影响。生命满意度对大脑流失有直接的负面影响,而自我效能感和财务焦虑对大脑排水产生了积极影响。学生对生活满意度的看法是大脑流失意图的重要先决条件,自我效能感和财务焦虑对这种影响具有中介作用。最影响其迁移意图的因素是脑力流失态度和教职员工。财务焦虑,自我效能感和出国意图是影响大脑流失看法的变量。结论:本研究中表达的移民意图和大脑消耗态度预测,对该国的医疗保健和旅游服务的可持续性构成了直接和严重的威胁。需要采取干预措施,例如改善财务焦虑和提供生活满意度。关键词:脑力消耗,财务焦虑,生活满意度,移民,自我效能,串行模型分析,学生
糖尿病管理中越来越多的证据使疾病感知与对病情的成功控制,并改善了成年人的健康结果(1,2)。青少年通常很难遵守糖尿病护理计划(3,4),以便更好地了解他们对疾病的看法可以帮助改善其控制和健康成果(5,6)。此外,在青春期还形成了疾病感知,这使得这是一个重要的时期,在其中考虑这种情况(7,8)。尽管有充分的证据表明疾病对成年人的重要性,但对于青少年来说,这是尚无定论的(9,10)。可用的研究主要集中于提供不一致结果的定量研究(6,11)。在本文中,在一项审查研究的支持下,三项研究的定性发现强调了疾病在青少年发展框架内的重要性,并建议未来的研究以操作这些发现。本文的独创性在于对患者声音的有效使用和反映,这在医学研究中通常不存在。
当前的感知模型在很大程度上取决于资源密集型数据集,从而促使需要创新。通过从各种注释中构造图像输入来利用综合数据的最新进展,证明对下游任务有益。虽然先前的方法已单独解决了生成和感知模型,但首次降低了两者的谐调,从而解决了为感知模型生成有效数据的挑战。通过感知模型增强图像发生,我们引入了感知感知损失(P.A.损失)通过细分,提高质量和可控性。为了提高特定感知模型的性能,我们的方法通过提取和利用感知意识来定制数据(P.A.attr)在一代中。对象检测任务的实验结果突出显示了detDiffusion的统治性能,建立了布局引导的新最新作品。此外,降低的图像合成可以有效地增强训练数据,从而显着增强下游检测性能。