GDM的全球患病率在5.8%至11.7%之间。6流行率的广泛差异可能是由GDM诊断标准的差异来解释的。6尽管90%的GDM病例将在分娩后正常化,但有些案件将持续存在,而妇女将发展糖尿病前期或DM。据报道,分娩后五年后约有50%的GDM患者被诊断为2型DM。7在斯里兰卡(Sri Lanka),一项纵向研究发现,与没有GDM相比,GDM女性在10年持续时间内患糖尿病的几率是10.6倍。8然而,生活方式干预措施有机会减慢这些女性中2型糖尿病的进展。9重要的是向具有GDM的女性提供准确,及时的信息,以了解其未来患糖尿病的风险。他们还应该接受根据需求量身定制的干预措施。确保有关积极生活方式修正案的行为的持续改变,应考虑几个要素,包括风险感知,信念和心理社会障碍。10除其他外,风险感知被确定为各种理论健康模型中健康行为的重要决定因素。11对患有未来糖尿病的高风险感知的女性更有动力进行筛查和生活方式改变。12关于发育糖尿病(RPS-DD)问卷的风险感知调查评估了一个人感知的患有这种疾病的风险的各个方面。13此工具由乐观偏见,个人控制,糖尿病风险因素知识,福利和障碍以及风险感知组成。最初用于预防糖尿病计划密歇根州糖尿病研究中心,14它在GDM母亲之间进行了随后的验证过程。13使用Cronbach的α的内部一致性非常出色(0.65至0.72)。RPS-DD问卷开发过程是彻底且多阶段的。但是,可以组织其他研究以评估验证性因素分析和评估其外部有效性。此外,马来语中没有发表的工具来衡量该人群中糖尿病的风险感知。这项研究旨在适应,翻译和
该项目的数据将有助于美国海军完成其使命,同时通过改进环境标准中使用的听觉加权函数来保护处于危险中的海洋哺乳动物。由于当前的听觉加权函数源自长持续时间的纯音,可能无法推广到其他类型的声音,因此开发持续时间相关和带宽相关的听觉加权函数将支持对广泛信号的感知响度估计。定义虎鲸的感知响度和信号持续时间之间的关系还将为其他大型齿鲸(如喙鲸和抹香鲸)提供数据,因为虎鲸目前是该群体的最佳听觉替代品。
尽管基于3D的GAN技术已成功地应用于具有各种属性的照片真实的3D图像,同时保持视图一致性,但很少有关于如何罚款3D impersimens的研究,而不会限制其属性特定对象的特定对象类别。为了填补此类研究空白,我们提出了一个基于3D的GAN代表的新型图像操纵模型,以对特定的自定义贡献进行细粒度控制。通过扩展最新的基于3D的GAN模型(例如,EG3D),我们的用户友好定量操作模型可以实现对3D操作多属性数量的精细而归一化的控制,同时实现了视图一致性。我们通过各种实验验证了我们提出的技术的有效性。
深度卷积神经网络(DCNN)的预训练在视觉情绪分析(VSA)领域起着至关重要的作用。大多数提出的方法都采用在大型物体分类数据集(即 ImageNet)上预训练的现成的主干网络。虽然与随机初始化模型状态相比,它在很大程度上提高了性能,但我们认为,仅在 ImageNet 上进行预训练的 DCNN 可能过于注重识别物体,而未能提供情绪方面的高级概念。为了解决这个长期被忽视的问题,我们提出了一种基于人类视觉情绪感知(VSP)机制的面向情绪的预训练方法。具体而言,我们将 VSP 的过程分为三个步骤,即刺激接受、整体组织和高级感知。通过模仿每个 VSP 步骤,我们通过设计的情绪感知任务分别对三个模型进行预训练,以挖掘情绪区分的表示。此外,结合我们精心设计的多模型融合策略,从每个感知步骤中学习到的先验知识可以有效地转移到单个目标模型中,从而获得显着的性能提升。最后,我们通过大量实验验证了我们提出的方法的优越性,涵盖了从单标签学习(SLL)、多标签学习(MLL)到标签分布学习(LDL)的主流 VSA 任务。实验结果表明,我们提出的方法在这些下游任务中取得了一致的改进。我们的代码发布在 https://github.com/tinglyfeng/sentiment_pretraining 。
计算机视觉社区过去主要集中于视觉算法的开发,用于对象检测,跟踪和分类,并在白天和类似办公室的环境中使用可见的范围传感器。在过去的十年中,红外线(IR),深度,X射线和其他不可见名的成像传感器仅在医学和防御等特殊领域中使用。与传统的计算机视觉相比,在这些感觉领域的兴趣相对较低,部分原因是它们的高成本,低分辨率,图像质量差,缺乏广泛可用的数据集以及/或缺乏对频谱不可访问的部分的优势的考虑。随着传感器技术的迅速发展,传感器成本急剧下降,这些局限性正在克服。此外,对安全和可靠性是主要问题的自主系统的兴趣日益增强,强调了强大的感知系统的重要性。在此类关键系统中,在不同频谱中运行的传感器相互补充,以克服每个单独的传感器的局限性,以在各种照明和天气条件下提供强大而可靠的感知。
对自动驾驶汽车的抽象协作感知旨在克服个人感知的局限性。在多个代理之间共享信息,可以解决多个问题,例如遮挡,传感器范围限制和盲点。最大的挑战之一是在受到束缚绩效和沟通带宽之间找到正确的权衡。本文提出了一种新的合作感知管道,该管道基于Whate2Comm算法具有优化策略,以减少几种代理之间的传输数据量。这些策略涉及编码器部分中的数据减少模块,以有效地选择最重要的特征,并以V2X方式交换消息的新代表,该消息将考虑信息及其位置的向量而不是高维特征图。在两个模拟数据集(OPV2V和V2XSET)上评估我们的方法。数据集上的AP@50的准确性大约为7%,并且在V2XSET和OPV2V上分别降低了89.77%和92.19%。
机器人及时通过传感器数据构建持久,准确且可操作的模型的能力是自主操作的范围。在将世界表示为点云可能足以进行本地化时,避免障碍物需要更密集的场景表示形式。另一方面,更高级别的语义信息通常对于分解必要的步骤来完成一项复杂的任务,例如烹饪,自主是至关重要的。因此,迫在眉睫的问题是,手头机器人任务的合适场景表示是什么?这项调查提供了对关键方法和框架的全面回顾,这在机器人空间感知领域推动了进步,并特别关注了代表的历史演变和当前的趋势。通过将场景建模技术分类为三种主要类型(公式,公式和指标 - 语言流行),我们讨论了空间启示框架正在从构建世界的纯几何模型转变为更高级的数据结构的方式,这些模型包括更高级别的概念,例如对象实例和位置的概念。特别重点是实时同时定位和映射(SLAM)的方法,它们与深度学习的集成,以增强了鲁棒性和场景的理解,以及它们处理场景动态性的能力,作为当今驾驶Robotics研究的一些最热门的主题。我们在讨论方面的挑战和未来的研究方向的讨论中进行了结论,以建立适合长期自治的强大而可扩展的空间感知系统。
抑郁症是全球第三大致残原因,已成为影响所有年龄段人群的重大公共卫生问题,对身心健康产生深远的负面影响。在美国,经历重度抑郁发作的一生中风险接近 30% (1,2)。在此背景下,抑郁家庭环境中的经历在塑造后代对抑郁和焦虑症的脆弱性和适应力方面起着至关重要的作用 (3)。因此,研究越来越多地关注家庭动态和抑郁症之间的复杂相互作用,特别强调照顾者的情绪健康对儿童心理发展的影响。照顾者的焦虑和压力被认为是可能引发或加剧抑郁症状的关键因素 (4),此外,父母的抑郁和焦虑有可能跨代传递 (5)。例如,Carly J. Johnco 和同事发现了焦虑和抑郁代际传递的证据,并指出父母的排斥和缺乏温暖会显著增加儿童患抑郁症的风险(6)。照顾者的焦虑和压力等心理健康问题会对家庭环境产生不利影响,从而可能增加后代患抑郁症的风险。有多种机制可以阐明照顾者的压力如何影响儿童:1.家庭环境对神经发育的影响:Nicole R. Bush 和同事发现,家庭社会经济地位、家庭结构和环境、养育行为和互动方式、父母的心理健康和功能以及父母的物质使用等因素都会影响儿童的大脑发育,进而影响他们患精神疾病的风险(7);2.情绪感染:儿童可能会内化照顾者的情绪状态,导致抑郁症状的出现。行为模仿:儿童可能会采用照料者模仿的适应不良的应对策略。例如,Emily L. Robertson 及其同事观察到,自 COVID-19 疫情爆发以来,照料者的焦虑、愤怒、悲伤/抑郁情绪增加,饮食和睡眠模式发生变化,对未来的希望减少,冲突加剧,这些因素可以预测一个月后其子女脾气问题、冲突和注意力缺陷多动障碍 (ADHD) 症状的严重程度 ( 8 )。3. 育儿实践受损:照料者的焦虑会破坏育儿行为,导致过度保护、管教不一致或忽视,进而导致儿童情绪失调和抑郁症状。由于照料者情感缺失导致亲子关系恶化,进一步增加了儿童患抑郁症的可能性 ( 9 )。4.社会经济和环境压力源:照料者的压力往往伴随着社会和经济压力,这些压力会通过限制儿童获得资源和机会而加剧上述影响(10、11)。尽管有大量的研究,但大多数研究都是在西方背景下进行的,主要关注父母情绪对儿童情绪健康的影响。关于照料者压力和焦虑影响的研究明显不足
抽象课程推荐系统可以通过利用用户交互数据来帮助学生识别合适或有吸引力的课程,这显示了用户和课程之间以前的参与。但是,现有课程推荐系统的普遍问题是它们倾向于优先考虑准确性而不是解释性。这些复杂模型的“黑框”性质提出了一个挑战:准确表征和建模用户的偏好,同时还提供明确的,具有预性和可解释的用户配置文件。为了解决这种限制,我们为课程推荐提出了一个新颖的知识实体感知模型,该模型称为KEAM,该模型基于知识图的详细信息支持明确的用户个人资料生成,以增强学生对建议背后的理由的理解。具体来说,我们利用知识图中编码的信息,通过更换隐藏单元来使用神经网络之间建立单位之间的连接。接下来,对模型进行了培训,可以捕获学生的偏好并创建用户配置文件,以提供可解释的建议。在两个现实世界的在线数据集上进行了全面的实验,以评估所提出的模型的有效性和解释。
