hypefl:一种新型基于区块链的建筑,使用联合学习和合作感知完全连接的自动驾驶汽车系统
1语言与认知中心Groningen(CLCG),荷兰格罗宁根大学的格罗宁根大学; 2 Otorhinolaryngology/Head and Neck手术,荷兰格罗宁根大学医学中心Groningen大学医学中心; 3荷兰格罗宁根格罗宁根大学行为和认知神经科学研究学院; 4 CNRS UMR 5292,里昂神经科学研究中心,听觉认知和心理声学,Inserm umrs 1028,UniversitéClaudeBernard Lyon 1,法国里昂,里昂大学; 5英国剑桥大学的临床神经科学系声音实验室,剑桥听证会;和6 W.J.Kolff生物医学工程与材料科学研究所,荷兰格罗宁根大学医学中心格罗宁根大学医学中心。 版权所有©2024作者。 ear&听证会代表美国听觉学会出版,由沃尔特·克鲁维尔·健康公司(Wolters Kluwer Health,Inc。)发表。 这是根据Creative Commons Attribution许可证4.0(CCBY)分发的开放访问文章,该文章允许在任何媒介中不受限制地使用,分发和复制,前提是适当地引用了原始工作。 补充数字内容可用于本文。 直接的cita the the the Printed文本中出现,并在日记网站(www.ear-hearing.com)上的HTML和本文的文本中提供。Kolff生物医学工程与材料科学研究所,荷兰格罗宁根大学医学中心格罗宁根大学医学中心。版权所有©2024作者。ear&听证会代表美国听觉学会出版,由沃尔特·克鲁维尔·健康公司(Wolters Kluwer Health,Inc。)发表。这是根据Creative Commons Attribution许可证4.0(CCBY)分发的开放访问文章,该文章允许在任何媒介中不受限制地使用,分发和复制,前提是适当地引用了原始工作。补充数字内容可用于本文。直接的cita the the the Printed文本中出现,并在日记网站(www.ear-hearing.com)上的HTML和本文的文本中提供。
此外,在帕金森氏病,抑郁症,躁郁症,焦虑症和精神分裂症等精神病和神经系统疾病中观察到的时间感知的扭曲仍然知之甚少(Teixeira等,2013)。例如,患有抑郁症的人通常集中于过去的过去经历,并且经常报告时间似乎缓慢甚至感觉已经停止了(Ren等,2023)。同样,患有帕金森氏病的患者也倾向于感知时间更慢。另一方面,焦虑会引起时间的加速感知,尤其是在高压力和唤醒时期(Holman等,2023)。患有注意力缺陷多动障碍的人可能会感觉到时间比实际的时间更快或慢(Ptacek等,2019)。Stanghellini等。发现,精神分裂症患者可能将时间的看法描述为缺乏连续性,而感到彼此断裂的时刻(Stanghellini等,2016)。这可能表现为即时时间流的损失,使事件感到孤立和无关,这有助于组织日常活动和维持社交互动的困难。因此,时间感知的研究不仅是理解人类认知的基础,而且对实用应用具有巨大的潜力,这些应用可能会对个人和社会福祉产生积极影响,并且对于诊断和治疗各种精神病学和神经疾病具有实际意义。
为了感知环境中的对象并互动,我们毫不费力地在所需的位置配置了我们的figertips。因此,可以合理地假设潜在的控制机制依赖于有关我们的手和纤维的结构和空间维度的准确知识。然而,这种直觉受到了多年的研究挑战,表明纤维几何学的感知中存在巨大的偏见。1–5这种感知偏见被视为证据表明大脑对人体的内部表示被扭曲,6导致了关于我们行为熟练的明显悖论。7在这里,我们对手工感知的偏见提出了另一种解释,这是噪音的贝叶斯整体的结果,但是关于纤维几何和姿势的无偏见,无偏的体感信号。为了解决这一假设,我们将贝叶斯反向工程与索引填充剂的关节和填充定位进行的行为实验相结合。,我们以感觉或在空间坐标中对贝叶斯的整合进行了建模,表明后一种模型变体导致了纤维感知的偏见,尽管有准确表示纤维长度。关节和纤维化定位响应的行为度量显示出相似的偏见,这些偏见是由空间基的,但不是基于感觉的模型变体所填充的。空间模型变体还优于具有内置几何偏差的失真手模型。总的来说,我们的结果表明,纤维几何形状的感知失真不会反映扭曲的手模型,而是源自几乎最佳的贝叶斯对体感信号的推断。
AI系统已经快速高级,多元化和扩散,但是我们对人们对他们的思想和道德的看法的了解仍然有限,尽管它对人们是否信任AIS以及他们如何分配AI引起的危害的责任。在一项预先进行的在线研究中,有975名参与者对26个AI和非AI实体进行了评价。总的来说,AI被认为具有低到中度的代理(例如,计划,行动),无生命的物体和蚂蚁之间以及低经验(例如,感应,感觉)。例如,Chatgpt的评分只能像岩石一样能够感到愉悦和痛苦。类似的道德能源,道德机构(做对与错)和道德专案(正确或错误地对待)较高,更多样化,尤其是道德机构:最高评级的AI,Tesla Full自动驾驶的汽车,被认为是道德上的危害,以危害作为黑猩猩。我们讨论了设计选择如何帮助管理感知,尤其是在高度的道德背景下。
在获取磁共振(MR)图像中,较短的扫描时间会导致更高的图像噪声。因此,使用深度学习方法自动图像降解是高度兴趣的。在这项工作中,我们集中于包含线状结构(例如根或容器)的MR图像的图像。特别是,我们研究了这些数据集的特殊特征(连接性,稀疏性)是否受益于使用特殊损失功能进行网络培训。我们特此通过比较损失函数中未经训练的网络的特征图将感知损失转换为3D数据。我们测试了3D图像降级的未经训练感知损失(UPL)的表现,使MR图像散布脑血管(MR血管造影-MRA)和土壤中植物根的图像。在这项研究中,包括536个MR在土壤中的植物根和450个MRA图像的图像。植物根数据集分为380、80和76个图像,用于培训,验证和测试。MRA数据集分为300、50和100张图像,用于培训,验证和测试。我们研究了各种UPL特征的影响,例如重量初始化,网络深度,内核大小以及汇总结果对结果的影响。,我们使用评估METIC,例如结构相似性指数(SSIM),测试了四个里奇亚噪声水平(1%,5%,10%和20%)上UPL损失的性能。我们的结果与不同网络体系结构的常用L1损失进行了比较。我们观察到,我们的UPL优于常规损失函数,例如L1损失或基于结构相似性指数(SSIM)的损失。对于MRA图像,UPL导致SSIM值为0.93,而L1和SSIM损耗分别导致SSIM值分别为0.81和0.88。UPL网络的初始化并不重要(例如对于MR根图像,SSIM差异为0.01,在初始化过程中发生,而网络深度和合并操作会影响DeNo的性能稍大(5卷积层的SSIM为0.83,而核尺寸为0.86,而5卷积层的0.86 vs. 0.86对于根数据集对5卷积层和5卷积层和内核尺寸5)。我们还发现,与使用诸如VGG这样的大型网络(例如SSIM值为0.93和0.90)。总而言之,我们证明了两个数据集,所有噪声水平和三个网络体系结构的损失表现出色。结论,对于图像
摘要。图像分割是一项复杂的任务,旨在同时符合各种质量标准。在这种情况下,拓扑越来越被考虑。保证正确的拓扑特性对于对物体的具有挑战性确实至关重要(例如,小,细长,多种形状。在医学成像中尤其如此。设计拓扑感知指标是相关的,既可以评估分割结果的质量又用于设计学习程序所涉及的损失。在本文中,我们介绍了CCDICE(连接的组件骰子),这是一种拓普式的拓扑指标,可概括流行的骰子评分。与骰子相比,该骰子的作用在像素的尺度上,CCDICE的作用在比较对象的相关组件的尺度上起作用,从而导致对其相对结构和嵌入的拓扑评估。CCDICE是一种简单,可解释的,归一化的和低计算的拓扑度量。我们提供了CCDICE的正式定义,CCDICE是一种用于计算它的算法方案,并通过比较其他常规拓扑指标来评估其行为,从而强调了其相关性。代码可在GitHub上找到:https://github.com/pierrerouge/ccdice。
紧急医疗服务(EMS)代表了保加利亚医疗基础设施的重要性,为急性医疗紧急情况提供了紧急护理和立即治疗。[1]随着全球折磨中对医疗保健系统的需求,EMS的作用变得更加迅速被淘汰。Pirogov于1951年出现,在保加利亚提供专门的多学科急诊护理方面已将自己定位为领导者。[4] uhatem“ N.I. Pirogov”因在各种医学专业中提供全面的24小时紧急服务而得到广泛认可,包括为紧急手术,儿科,烧伤治疗和毒理学提供创伤护理,为该地区的紧急医疗提供基准。[5,6]
摘要。在无线传感器网络(WSN)中,通常由具有资源限制的节点组成,利用效率的流程对于增强网络寿命以及因此,在超密集和异质环境中的可持续性(例如智能城市)至关重要。特别是平衡在这种动态环境中有效传输数据所需的能量,这对降低数据冗余性的交易构成了重大挑战,这是降低数据冗余性的交易,同时实现可接受的交付率是一个基本的研究主题。通过这种方式,这项工作提出了一种新的能源感知的流行病协议,该协议使用网络能量的当前状态来通过自我调整每个节点转发行为自我调整为渴望或懒惰的局部残留电池来创建动态分布拓扑。模拟的评估证明了其在能耗,输送率和计算负担下的效率与经典八卦协议以及定向协议相比。