摘要 - 批判是基于激光雷达的对象检测方法的主要挑战,因为它使自我车辆无法观察到的感兴趣区域。提出的解决此问题的解决方案来自通过车辆到所有(V2X)通信的协作感知,这要归功于在多个位置存在连接的代理(Vehilect和智能路边单位)的存在,以形成完整的场景表示。V2X合作的主要挑战是绩效 - 带宽折衷方案,它提出了两个问题(i)应该在V2X网络上交换哪些信息,以及(ii)如何融合交换的信息。当前最新的最新方法可以解决中期方法,其中传达了点云的鸟眼视图(BEV)图像,以使连接剂之间的深层相互作用,同时减少带宽消耗。在达到强大的性能时,大多数中期方法的现实部署都受到过度复杂的体系结构和对代理间同步的不切实际的假设的阻碍。在这项工作中,我们设计了一种简单而有效的协作方法,基于从每个代理商中交换输出,从而实现更好的带宽性能折衷,同时最大程度地减少了单车检测模型所需的更改。此外,我们放宽了现有的有关代理间同步的最新方法中使用的假设,仅需要在连接的代理之间进行常用时间参考,这可以在实践中使用GPS时间实现。该代码将在https://github.com/quan-dao/practical-collab-ception中发布。在V2X-SIM数据集中进行的实验表明,我们的协作方法达到76.72平均平均精度,这是早期协作方法的性能99%,同时消耗了与晚期协作一样多的带宽(平均为0.01 MB)。
小鼠Luis Boero* 1,2,Hao Wu* 1,2,3,Joseph D. Zak 4,Paul Masset 5,Farhad Pashakhanloo 1,2,Siddharth Jayakumar 1,2美国剑桥,美国2号哈佛大学蜂窝生物学,美国剑桥大学,美国3化学与化学生物学系,哈佛大学,美国剑桥,美国4伊利诺伊州伊利诺伊大学生物科学系美国剑桥的哈佛大学工程和应用科学8肯普纳自然与人工智能研究所,哈佛大学,美国剑桥 *这些作者贡献了同样的贡献。†与Venkatesh N. Murthy(vnmurthy@fas.harvard.edu)的通信,自然界中的抽象气味线索由于动荡的运输而稀疏且高度波动。为了研究动物如何看待这些间歇性线索,我们制定了一项行为任务,在该任务中,头部约束小鼠根据几秒钟内随机提出的离散气味脉冲的总数做出了二进制决策。小鼠很容易学会这项任务,并且他们的性能被广泛使用的决策模型很好地描述。logistic在呼吸周期内针对气味脉冲时间的二进制选择的逻辑回归表明,小鼠对吸入期间刺激的感知重量更高,而不是呼气,这种相位依赖性与嗅觉感觉神经元中反应的幅度密切相关。前梨状皮层(APCX)神经元对气味脉冲的种群反应也通过呼吸阶段进行调节,尽管单个神经元表现出不同的相位依赖性水平。单个APCX神经元对气味脉冲反应,导致表示有感觉证据的特征,但没有其积累。我们的研究表明,小鼠可以在数十个呼吸中整合间歇性的气味信号,但是感觉输入的呼吸调节对信息获取施加了限制,即皮质电路无法克服改善行为。
该研究使用了横截面设计,并在2022年4月24日至6月23日之间从加纳阿散蒂地区的曼蓬市政府收集了一次性数据。该研究认为,不同干部(表1)的医护人员对Covid-19疫苗的吸收是一种综合因变量。然后,我们确定了列出共同感知因素的关联因素,例如感知的COVID-19感染的严重性,感知的疫苗安全,感知到的原籍国,Covid-19感染的风险以及WHO或GHANA MINIS MINIS HEALTH(MOH)对专家建议(MOH)对专家建议的信任。使用在线Google表格从参与者那里收集了参与者以前的病史和社会人口统计学特征,例如年龄,性别,宗教,宗教,婚姻状况,教育地位和居住区,并在多个逻辑回归模型中进行了调整(图1)。
摘要这项研究通过一种称为伪热的方法来研究虚拟现实中的体重感知,而没有来自现实世界的动力学反馈。这个虚幻的模型重点介绍了视觉输入和躯体形式反馈的解离,并试图通过操纵视觉输入来诱导VR用户中虚拟对象的负载的感觉。为此,可以对控制显示比(即手臂的真实和虚拟运动之间)进行修改,也可以用于对虚拟对象的位置产生视觉幻觉效果。因此,VR用户将其视为对象位移中的速度变化,从而帮助他们获得更好的虚拟权重感觉。本文的主要贡献是开发一种新颖的整体评估方法,该方法可以衡量虚拟现实环境中存在感,尤其是当参与者提高虚拟对象并体验其体重时。我们的研究研究了虚拟对象重量对参与者向上臂运动的运动学参数和速度曲线的影响,以及使用真实权重进行的平行实验。通过将真实对象与虚拟对象进行比较,可以深入了解参与者手臂运动中观察到的运动学特征的变化。此外,还进行了利用Borg CR10问卷的主观测量,以评估参与者对手部疲劳的看法。这种发现中的这种一致性强调了伪热反馈在模拟虚拟环境中逼真的体重感觉中的功效。对收集的数据(包括主观和客观测量)的分析得出的结论是,参与者在两个虚拟对象任务期间都经历了类似的疲劳感觉和手动运动学的变化,这是由伪热的反馈和实际举重提升任务产生的。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
上午11:30 - 下午12:30 │2025年2月21日(星期五)CPD1.24,1/f,Run Run Shaw Tower│Centennial Campus│香港大学抽象视觉感知学习(VPL)可以通过培训来增强任务性能,有时通过培训提高了准确性,从近乎机会到熟练程度。 鉴于其在优化视觉和认知功能中的关键作用,因此了解通过学习的看法如何变化至关重要。 然而,人类学习是一个动态过程,涉及一般学习,遗忘,快速重新学习和适应,由于许多研究中使用的粗糙时间分析,通常会忽略它们。 本谈话从大规模的多任务VPL研究中介绍了发现,揭示了特定于主题的一般学习能力,会议内和间隔过程以及任务之间的干扰效应。 为了更好地分析这些学习动力学,我们使用非参数和分层贝叶斯模型介绍了新的数据分析方法,从而为人类学习行为提供了细粒度的见解。 此外,新的计算建模技术允许对生成过程模型进行逐审拟合,从而通过最小的培训数据可以预测学习性能。 这些进步为优化培训策略和改善人类绩效提供了基础。 演讲将以未来的研究方向结束,包括精炼生成模型,探索组件学习过程对经典感知学习操作的影响,并开发一个全面的框架来增强学习概括和效率。上午11:30 - 下午12:30 │2025年2月21日(星期五)CPD1.24,1/f,Run Run Shaw Tower│Centennial Campus│香港大学抽象视觉感知学习(VPL)可以通过培训来增强任务性能,有时通过培训提高了准确性,从近乎机会到熟练程度。鉴于其在优化视觉和认知功能中的关键作用,因此了解通过学习的看法如何变化至关重要。然而,人类学习是一个动态过程,涉及一般学习,遗忘,快速重新学习和适应,由于许多研究中使用的粗糙时间分析,通常会忽略它们。本谈话从大规模的多任务VPL研究中介绍了发现,揭示了特定于主题的一般学习能力,会议内和间隔过程以及任务之间的干扰效应。为了更好地分析这些学习动力学,我们使用非参数和分层贝叶斯模型介绍了新的数据分析方法,从而为人类学习行为提供了细粒度的见解。此外,新的计算建模技术允许对生成过程模型进行逐审拟合,从而通过最小的培训数据可以预测学习性能。这些进步为优化培训策略和改善人类绩效提供了基础。演讲将以未来的研究方向结束,包括精炼生成模型,探索组件学习过程对经典感知学习操作的影响,并开发一个全面的框架来增强学习概括和效率。关于发言人Lu Zhong-lin教授是NYU上海的神经科学教授,也是纽约大学神经科学中心的全球网络教授。Lu教授于2019年加入俄亥俄州立大学的纽约大学,在那里他是艺术与科学学院杰出心理学教授,心理学,验光学和转化数据分析教授,以及认知和脑科学中心,以及认知和行为脑智慧中心的中心。lu是实验心理学家和心理科学协会的会员。Zoom会议(对于无法亲自参加研讨会的参与者)
摘要:节能是信息技术 (IT) 公司面临的一大挑战,这些公司希望在提供大规模云服务的同时减少碳足迹。这些公司通常依靠数据复制技术来满足租户的目标,例如性能,尤其是在全球分布的数据量不断增加的情况下。在本文中,我们提出了一种静态和多目标数据复制策略 (E2ARS),旨在降低提供商的能源消耗和支出。E2ARS 利用云异构性和节能技术。我们首先比较了我们策略的不同策略,从仅考虑能源消耗到仅考虑支出。不出所料,你越想降低能源消耗,复制就越少。然后,我们将 E2ARS 与文献中的策略进行比较。当这些策略仅满足两个目标中的一个时,E2ARS 可同时降低能源消耗和支出。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
在一个上下文中似乎很明显的话,如果该上下文发生变化,则可以具有完全不同的含义。11尽管已经广泛研究了与上下文相关的推论,但一个基本问题仍然存在:12大脑如何同时推断感觉输入的含义和基本的13个上下文本身,尤其是当上下文在变化时?在这里,我们研究了灵活的感知分解14个 - 能够迅速适应而无需反复试验的上下文转移的能力。我们在动态环境中引入了15个新颖的变更检测任务,需要跟踪潜在状态和16个上下文。我们发现,小鼠表现出对潜在上下文的第一审判行为适应,而不是推理而不是奖励反馈。通过在可观察到的马尔可夫决策过程中得出贝叶斯最佳政策,我们表明,快速适应从内部信念状态的顺序19个更新中出现。此外,我们还表明,通过20枚强化学习训练的人工神经网络实现了近距离的性能,从而在其复发性动态中实现了类似贝叶斯推理的21种机制。这些网络开发了灵活的内部代表 - 22个tations,可以实时调整推理模型。我们的发现建立了灵活的23感知推断,作为认知灵活性的核心原理,为在不确定环境中的适应性行为提供了计算和24个机械性见解。25