用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
T F = 0的相应传输函数。15,其中虚线曲线代表2 = - 50,a 3 = - 3980。(b)对于t f = 0。15,在使用θ= p 3 i = 0 a i t i(固体蓝色)的情况下,使用θ= p 5 i = 0 a = 0 a i t i具有最佳参数a 2 = - 50,a 3 = -3980(dotted-y/ y/ y/ y/ f = 12 fur = fur = fure), 15。在T min f = 0时最小的操作时间t f到达。 15用于c <0。 01。 数值计算证明,进一步设置更高的多项式ANSATZ(S> 5)并不能改善缩短t min f。 参考文献中介绍了STA与最佳控制理论之间的详细比较。 [1],证明IE方法允许通过在多项式或三角分析中引入更多自由dom来从最佳控制理论中获得的性能。 在这里,我们通过将IE与多项式函数θ= p n i = 0 a i t i,三角函数θ= a 0 + a 1 t + p n i = 2 a i sin [(i-1)πt/t f]和指数函数θ= a 0 e e 1 e t + a 2 e e-t + a 2 25以及表I所示的Faquad,表明较高的多名ANSATZ提供了准最佳时间解决方案。15。在T min f = 0时最小的操作时间t f到达。15用于c <0。01。数值计算证明,进一步设置更高的多项式ANSATZ(S> 5)并不能改善缩短t min f。参考文献中介绍了STA与最佳控制理论之间的详细比较。[1],证明IE方法允许通过在多项式或三角分析中引入更多自由dom来从最佳控制理论中获得的性能。在这里,我们通过将IE与多项式函数θ= p n i = 0 a i t i,三角函数θ= a 0 + a 1 t + p n i = 2 a i sin [(i-1)πt/t f]和指数函数θ= a 0 e e 1 e t + a 2 e e-t + a 2 25以及表I所示的Faquad,表明较高的多名ANSATZ提供了准最佳时间解决方案。
摘要 电力系统的可靠运行是电力公司的一个主要目标,这需要准确的可靠性预测以最大限度地减少电力中断的持续时间。由于天气状况通常是智能电网(尤其是其配电网)电力中断的主要原因,本文全面研究了各种天气参数对配电网可靠性性能的综合影响。特别地,提出了一种基于多层感知器 (MLP) 的框架,使用常见天气数据的时间序列来预测一个配电管理区域中每日持续和瞬时电力中断的次数。首先,实施参数回归模型来分析每日电力中断次数与各种常见天气参数(如温度、降水量、气压、风速和闪电)之间的关系。然后将选定的天气参数和相应的参数模型作为输入,以建立 MLP 神经网络模型来预测每日电力中断次数。引入了一种改进的基于极限学习机 (ELM) 的分层学习算法,使用来自佛罗里达州电力公司的实时可靠性数据和来自国家气候数据中心 (NCDC) 的常见天气数据来训练制定的模型。此外,还实施了敏感性分析以确定各种影响