1。引言感官处理是一个神经过程,可以从身体和环境中对感觉刺激进行编码,解释和回忆以促进适当的反应[1-3]。感觉调制是指大脑调节哪些感觉输入,何时和处理的能力[4]。Dunn的感觉处理模型基于神经系统阈值和自我调节[5-6]。神经系统阈值是感知感觉刺激的点,阈值范围从低到高[7]。阈值较低的个体迅速识别刺激,而阈值较高的人可能会错过标准感觉输入[8-9]。自我调节涉及调节感觉刺激,并且可以被动或活跃。被动自我调节器不采取行动来调节感觉输入,而主动自我调节器采用策略来控制刺激的类型或数量[10]。个体可能对每日感觉刺激的反应有所不同,从而导致广泛的变化[11-12]。尽管感觉处理的差异是正常的,但高度变异可能与不同的心理病理学有关[13]。
摘要 目的:脑机接口 (BCI) 技术的发展是帮助因严重运动瘫痪而失去说话能力的人实现交流的关键。一种越来越受关注的 BCI 控制策略采用从神经数据进行语音解码。最近的研究表明,直接神经记录和高级计算模型的结合可以提供有希望的结果。了解哪些解码策略可以提供最佳和直接适用的结果对于推动该领域的发展至关重要。方法:在本文中,我们优化并验证了一种解码方法,该方法基于语音重建,该语音重建直接从语音生成任务期间来自感觉运动皮层的高密度皮层脑电图记录中进行。主要结果:我们表明 (1) 专用的机器学习优化重建模型是实现最佳重建性能的关键;(2) 重建语音中的单个单词解码准确率达到 92%-100%(偶然水平为 8%);(3) 从感觉运动大脑活动直接重建可以产生可理解的语音。意义。这些结果强调了模型优化以实现最佳语音解码结果的必要性,并强调了基于感觉运动皮层重建的语音解码为开发下一代 BCI 通信技术所提供的潜力。
摘要 当我们学习时,大脑中会发生什么?自从 Cajal 的开创性工作以来,该领域已经取得了许多发现,表明经验如何改变单个突触的结构和功能。然而,最近的进展强调了从神经元和突触群体之间复杂的相互作用来理解学习的必要性。我们应该如何在如此宏观的层面上思考学习?在这里,我们开发了一个概念框架来弥合学习运作的不同尺度之间的差距——从突触到神经元再到行为。利用这个框架,我们探索指导跨这些尺度的感觉运动学习的原则,并为该领域未来的实验和理论工作奠定基础。关键词 神经元群体、感觉运动学习、状态空间框架、神经可塑性、维度、内部模型
参与研究可能带来哪些好处和风险?该研究在三年内检查糖尿病神经病变,并将 Medipin 测试与 NHS 常规做法(使用单丝进行测试)进行比较。因此,这将使患者了解他们的脚部感觉如何随时间变化。Medipin 测试可能检测到单丝测试无法检测到的糖尿病神经病变。如果参与者的常规护理团队之前没有对他们进行过测试,他们可能还会首次使用单丝设备进行测试。通过参与研究,患者可能会获得糖尿病神经病变的支持和治疗,否则他们不会获得这些支持和治疗。但是,无论患者是否参加本研究,他们的全科医生和/或糖尿病护理团队都将继续管理他们的糖尿病。患者不能要求付款、报销费用或
由分布式和相互连接的结构组成,这些结构通过皮质皮质连接和皮质增生环路相互作用,感觉运动(SM)网络在围产期内经历快速成熟,因此特别容易容易体现早产。然而,早产对新兴SM连接的发展和完整性的影响及其与后来的运动和全球障碍的关系仍然很少了解。在这项研究中,我们旨在探索在期限年龄(TEA)时SM白质(WM)连接的早期微观结构成熟的程度受早产调节,并且与18个月校正年龄的神经发育结果有关。我们分析了从发展中的人类连接项目(DHCP)数据库中的118个扩散MRI数据集:59个早产(PT)低风险婴儿在TEA附近扫描的茶和对照组的成年(MRI和性别年龄)配对的对照组(FT)新生儿。我们使用概率拖拉机划定了主要的SM皮质(S1,M1和中心区域)和皮层下结构之间的WM连接,并使用扩散张量成像(DTI)和Neurite方向分散分散和密度成像(NODDI)模型评估了它们的微观结构。为了超越特定的单变量分析,我们根据每个PT婴儿相对于FT组的多参数Mahalanobis距离计算了与早产相关的成熟距离。我们的结果证实了PT和FT婴儿之间SM段的微观结构差异,其影响随着出生时胎龄较低而增加。成熟距离分析强调,早产性对较高距离的SM段具有差异作用,因此对(i)皮质皮质的影响比皮质 - 皮层的连接有影响。 (ii)涉及S1的投影比M1和中心区域; (iii)最胸部皮质皮质块,涉及凸出核。茶时的这些不同的变化表明脆弱性遵循特定的模式与已建立的
很长一段时间以来,对于这种结构的毒性有限,它已被用作各种ands的抗菌剂,例如食品存储,健康行业,化妆品和纺织品涂料。在过去的几年中,尽管有几次评论评估了AGNP在生物医学ELDS中的特殊属性和应用,但在AGNPRS的综述中存在巨大差距。12,13这些类型的Ag纳米材料具有生物医学应用中传统Ag形式(球形结构)的更有效和多功能替代品,这是由于高灵敏度,特定的c光学特性和可调性。例如,由于缺乏锋利的边缘缺乏锋利的边缘和AGNP的光滑表面,Agnps从弱的表面增强的拉曼散射(SER)中脱离了强大的光学技术,可以放大吸收在粗糙金属表面上的拉曼散射信号。此外,AGNP的吸附仅限于可见光谱,而AGNP的表面积小于Agnprs,从而降低了它们的效率和催化的性能。此外,可以使用更好的光热转化效率进行治疗。14 - 16然而,Agnprs的特定结构证券(这些纳米op的尖端)可能会导致
保留所有权利。未经许可就不允许重复使用。(未经同行评审)是作者/资助者,他已授予Biorxiv的许可,以永久显示预印本。此预印本的版权持有人。http://dx.doi.org/10.1101/816835 doi:Biorxiv Preprint首次在线发布,2019年10月24日;
摘要在缺席癫痫患者中,反复癫痫发作可以显着降低其生活质量,并导致尚无法治疗的合并症。缺失癫痫发作的特征是与意识的短暂变化相关的脑电图上的尖峰和波排放。但是,在癫痫发作期间和外部,大脑对外部刺激的反应仍然未知。这项研究旨在研究来自Strasbourg(Gaers)的遗传缺失癫痫大鼠(GAERS)的反应性,这是一种缺乏癫痫的大鼠模型。动物是使用安静的零回波时间,功能磁共振成像(fMRI)序列在非墨水清醒状态下成像的。在间隔和发作时期应用了感觉刺激。全脑血流动力学反应。此外,使用平均场模拟模型来解释状态之间视觉刺激的神经反应性的变化。在癫痫发作期间,对两种感觉刺激的全脑反应受到抑制并在空间上受到阻碍。在皮质中,尽管采用了刺激,但在癫痫发作期间血液动力学反应在癫痫发作期间呈负极极化。平均场模拟显示由于刺激引起的活动受到限制的传播,并且与fMRI发现很好地达成了一致。结果表明,在缺席的情况下,在这种缺失的癫痫过程中,缺乏癫痫发作会阻碍感官处理,甚至抑制了感官处理。
将生物原理整合到人工嗅觉系统中,导致了气味检测和分类的显着前进。受到自然嗅觉的复杂机制的启发,研究人员正在开发模仿生物嗅觉途径功能的复杂系统。这些系统利用高密度化学主义传感器阵列(HCSA)结合了先进的计算技术,例如FPGA加速的肾小球收敛CUITS(FGCC)和层次图形图形神经网络(HGNN)。这种生物启发的方法可以实现对挥发性有机化合物(VOC)(VOC)的实时自适应反应,从而提高了气味识别的准确性和效率。是多参数sigmoidal传感器激活(MPSA),它通过利用传感器ARS的多种响应来量化VOC。通过模仿生物系统中发现的神经相互作用,通过可编程突触横梁(LIPSC)实施了横向抑制作用。添加 - 时间自组织图(TSOM)促进气味模式的动态聚类,从而使人们对复杂的气味环境有细微的理解。这项研究的一个新方面在于气味填充物的Grassmannian歧管嵌入(GME),该杂物提供了一个数学框架,用于代表和分析气味的多维性质。再加上哈密顿蒙特卡洛优化的反馈(HMC-FB),该系统有效地补偿了传感器读数的漂移,从而确保了随着时间的推移一致的性能。通过弥合生物学灵感与技术创新之间的差距,这些人工嗅觉系统有望彻底改变从环境监测到食品安全和医疗保健的应用。
非典型抗精神病药氯氮平的靶向多巴胺能途径和影响预脉冲抑制(PPI)以外的多个受体系统,这是一种对感觉运动门控的关键翻译度量。由于PPI是由异型抗精神病药(例如利培酮和氯氮平)调节的,因此我们假设P11(一种与焦虑和抑郁样行为以及G蛋白偶联受体功能相关的衔接蛋白 - 可能会调节这些效果。在这项研究中,我们通过测试野生型和全球P11敲除(KO)小鼠在氯吡啶酚,利培酮和氯氮平来评估了P11在氯氮平增强效应中的作用。我们还进行了结构和功能性脑成像。与我们期望类似焦虑的P11-KO小鼠会表现出增强的惊吓反应和对氯氮平的敏感性的增强,PPI测试表明,P11-KO小鼠对瑞治酮和氯氮平的PPI增强作用没有反应。成像揭示了P11-KO小鼠中不同的区域脑体积差异和降低的海马连通性,其氯氮平诱导的明显钝化的CA1区域变化。我们的发现突出了P11在调节氯氮平对感觉运动门控和海马连接性的影响中的新作用,从而为其功能途径提供了新的见解。