摘要 - 神经编码,包括编码和解码,1是神经科学的关键问题之一:2大脑如何使用神经信号将感觉感知3和运动行为与神经系统联系起来。然而,其中大多数研究仅旨在处理神经系统的类比信号5,同时缺乏生物6神经元的独特特征,称为Spike,这是神经计算的基本信息7单元,以及8个脑氨基素界面的基础。针对这些局限性,我们构成了一个转码框架,将多模式感觉10信息编码为神经尖峰,然后从11个尖峰中重建刺激。可以将感官信息压缩为10%的神经峰值,但通过重建100%的信息100%。我们的框架不仅可以可行,14个准确地重建动态视觉和听觉场景,15,还可以重建功能性磁性16共振成像大脑活动的刺激模式。重要的是,它具有各种类型的人工噪声18和背景信号的噪声免疫的17种能力。所提出的框架提供了19种有效的方法来以高通量方式执行多模式特征表示和20种重建,在嘈杂的环境中,有效的神经形态计算的潜在用法21。22
医学诊断过程通常包括患者的病史,体格检查,并且通常包括使用辅助测试和设备。这些测试可能包括血液检查,组织活检和成像技术,例如X射线照相,计算机断层扫描或磁共振成像。诊断周围神经损伤和伴随的神经性疼痛既困难又具有挑战性,部分原因是目前几乎没有经过验证的补充甲基疾病。没有既定的测试或成像技术,可以涉及有关神经的身体或功能状态以及神经与持续的神经性疼痛之间关系的临床适用信息。但是,通常可以通过疼痛日记和视觉模拟量表准确地跟踪疼痛强度和频率。此外,使用脑成像技术的最新研究说明了与慢性疼痛合成1和神经系统检查有关的中心活动作为神经传导测试2
此 Capstone 项目由西密歇根大学 ScholarWorks 免费提供给您,供您开放访问。它已被西密歇根大学 ScholarWorks 的授权管理员接受并纳入 Capstone 项目。如需更多信息,请联系 wmu- scholarworks@wmich.edu。
方法” 首席研究员:Vania Broccoli 博士 - CNR-米兰神经科学研究所 - IRCCS Ospedale San Raffaele,米兰 弗里德赖希共济失调 (FA) 是一种遗传性神经退行性疾病,导致步态和肢体进行性共济失调、构音障碍、腱反射丧失、锥体征和脊柱侧弯,并伴有心肌病和糖尿病。在某些情况下,患者会出现听力障碍和因视神经萎缩导致的视力严重丧失。关于这种疾病病理机制的大部分研究都集中在小脑和背神经节感觉神经元的退化。人们对视觉功能障碍和视网膜神经元退化的根本原因知之甚少。 我们的小组从 2 名患有中度或重度 AF 神经症状的患者体内生成了重编程干细胞 (iPSC),这 2 名患者分别因 Frataxin 基因中 GAA 性状的短暂或较大扩增而引起。在这个项目中,iPSC 细胞将分化为视网膜、感觉背神经节和大脑皮层的神经元,以研究细胞和线粒体的病理变化。通过比较分析,我们可以了解不同神经元类别中病理过程的进展和动态,这些神经元类别对 Frataxin 基因的失活更敏感(背神经节感觉神经元和视网膜神经元)或更抗性(大脑皮层神经元)。该项目的第二部分旨在利用 Cas9 蛋白生成“基因编辑”系统,目的是通过表观遗传机制重新激活沉默的 Frataxin 基因。通过这种方式,可以去除沉默基因的染色质修饰,诱导其启动子的重新激活和基因的重新表达。这种策略的优势在于,它能够以自身水平的表达激活内源基因,从而避免传统基因治疗方法中可能出现的基因过度表达引起的副作用。该系统的有效性将通过在患者成纤维细胞和疾病小鼠模型中重新激活 Frataxin 基因的能力来评估。还将研究 Frataxin 重新激活是否能够恢复以及在多大程度上恢复患者 iPSC 中存在的细胞和线粒体缺陷。该项目旨在通过使用患者干细胞生成受疾病不同影响的各类神经元,获得有关 FA 病理机制的新知识。此外,还将开发新的分子工具,可用于重新激活疾病中沉默的 Frataxin 基因,从而成为 AF 的新精准医疗治疗选择。 Tipo Ricerca:工作室预临床 Costo globale del Progetto 320.000 €,持续时间 2 anni(2022 年 4 月 – 2024 年 4 月)
被包括在社会互动中是人类和虚拟世界中的基本需求。但是,它在社交VR用户体验的背景下被忽略了。基于社会心理学,我们将包容性感定义为个人对一个群体的归属感和真实性感知的程度。我们最初使用非语言行为,该行为通常在社会VR中使用,作为理解包容感在社会VR中的作用的切入点。我们研究了现有社区成员的反应行为如何影响社会VR入职期间的包容感。我们具有三种反应性行为条件的受试者间实验(𝑁= 39)证实,现有社区成员的积极反应增加了包容感。和包容感会积极调节几种用户体验,包括享受和沉浸式。我们重点介绍了社会VR的潜在设计含义和未来研究。
a 意大利帕多瓦大学哲学、社会学、教育学和应用心理学系 b 西班牙巴利亚多利德大学生物医学工程组 c 西班牙巴利亚多利德生物工程、生物材料和纳米医学研究中心 (CIBER-BBN) d 上海复旦大学华山医院麻醉科 e 上海复旦大学华山医院神经外科 f 加拿大西安大略大学脑与思维研究所、生理学和药理学系和心理学系 g 美国密歇根大学医学院麻醉学系意识科学中心 h 德国图宾根马克斯普朗克智能系统研究所实证推断系 i 德国图宾根赫蒂临床脑研究所神经病学系 j 研究组奥地利维也纳大学计算机科学学院神经信息学 k 加拿大渥太华大学心理健康研究所
过去也曾出现过类似的 BCI。然而,这些 BCI 有局限性。用户可以按下按钮——这是一个不需要连续移动的简单动作。事实证明,使用这些 BCI 很难实现更复杂的动作。在何和他的团队的演示中,受试者通过精神控制机械臂跟踪光标。假手指能够像真手指一样连续跟踪光标。他说,该系统可以与用脑电图记录和无线电极编程的智能手机应用程序一起使用。这将消除对脑部手术的需要。
威胁处理的动物模型已经超越了杏仁核,以结合分布式神经网络。在人类研究中,近年来,证据加剧了挑战以杏仁核为中心的规范威胁回路,敦促修改威胁概念化。在过去十年中,对感官皮层中威胁处理的大量研究产生了特别有用的见解,以告知重新概念化。在这里,从动物和人类研究中综合发现,我们在感觉皮层中强调了敏感,特定和适应性的威胁表示,这是由于基于经验的感觉编码网络雕刻而引起的。因此,我们建议人类的感觉皮层可以推动“智能”(快速而精确的)威胁评估,从而产生威胁性的感官传入,以引起范围内的网络威胁响应。
1。引言感官处理是一个神经过程,可以从身体和环境中对感觉刺激进行编码,解释和回忆以促进适当的反应[1-3]。感觉调制是指大脑调节哪些感觉输入,何时和处理的能力[4]。Dunn的感觉处理模型基于神经系统阈值和自我调节[5-6]。神经系统阈值是感知感觉刺激的点,阈值范围从低到高[7]。阈值较低的个体迅速识别刺激,而阈值较高的人可能会错过标准感觉输入[8-9]。自我调节涉及调节感觉刺激,并且可以被动或活跃。被动自我调节器不采取行动来调节感觉输入,而主动自我调节器采用策略来控制刺激的类型或数量[10]。个体可能对每日感觉刺激的反应有所不同,从而导致广泛的变化[11-12]。尽管感觉处理的差异是正常的,但高度变异可能与不同的心理病理学有关[13]。
1计算机与信息科学系信息系统系,诺拉·本瓦尔·阿卜杜勒拉赫曼公主,沙特阿拉伯利雅得,沙特阿拉伯,2级计算机科学和IT系,Poonch Rawalakot,拉瓦拉科特大学,巴基斯坦大学,巴基斯坦大学,计算机科学与信息系统学院,计算机科学与信息系统学院,计算机科学与信息系统学院。科学,萨塔姆·本·阿卜杜拉齐兹王子,萨鲁亚阿拉伯al-kharj,计算机科学系5,计算机和信息技术学院,北部边境大学,北部边境大学,沙特阿拉伯,萨特阿拉伯6号,计算机科学学院,航空大学,伊斯兰堡,伊斯兰堡,伊斯兰堡,伊斯兰堡,伊斯兰教,伊斯兰教,伊斯兰教,伊斯兰教,科学和工程学。实验室,不来梅大学,德国不来梅