美国面临其第一个非传染性但可预防的大流行2糖尿病(T2DM)[1]。大约有14%的成年人被诊断出患有该疾病,另外33%被诊断为糖尿病前期,多个利益相关者已致力于开发多级方法,以减缓糖尿病前期到T2DM的过渡率[2]。糖尿病预防计划(DPP)是一种基于证据的方法,在许多医疗保健和健康科学期刊中都被引用。虽然医生被视为护理人员,护士和高级实践注册护士(APRN)在整个护理连续性中都采用,以影响预防糖尿病和糖尿病前期糖尿病的发生率和结果。护士在医疗保健的主要提供者中,可以促进从临床实践到基于社区的环境的DPP等循证干预措施(EBI)的实施。但是,DPP在医疗保健中基本上仍然是未经充实的方法。似乎存在有关DPP及其在不同患者人群中其可扩展性的知识差异。The purpose of this educational manuscript is three-fold: (1) to provide background on the Diabetes Prevention Program, its use and scalability to real- world settings, (2) to address some of the challenges of DPP across cultures, and (3) to increase awareness of how policy supports and improves populations' access to the DPP and its translational delivery models – reducing the prevalence of prediabetes, and hence diabetes, in this 国家。
摘要:脑机接口(BCI)在神经康复领域越来越受欢迎,而感觉运动节律(SMR)是一种可以被BCI捕捉和分析的脑振荡节律。先前的综述已经证明了BCI的有效性,但很少详细讨论BCI实验中采用的运动任务,以及反馈是否适合它们。我们重点研究了基于SMR的BCI中采用的运动任务以及相应的反馈,并在PubMed、Embase、Cochrane library、Web of Science和Scopus中搜索了文章,找到了442篇文章。经过一系列筛选,15项随机对照研究符合分析条件。我们发现运动想象(MI)或运动尝试(MA)是基于EEG的BCI试验中常见的实验范式。想象/尝试抓握和伸展手指是最常见的,并且有多关节运动,包括腕关节、肘关节和肩关节。在手抓握和伸展的MI或MA任务中存在各种类型的反馈。本体感觉以多种形式更频繁地使用。矫形器、机器人、外骨骼和功能性电刺激可以辅助瘫痪肢体运动,视觉反馈可以作为主要反馈或组合形式。然而,在恢复过程中,手部恢复存在许多瓶颈问题,例如弛缓性瘫痪或张开手指。在实践中,我们应该主要关注患者的困难,在机器人、FES或其他组合反馈的帮助下,为患者设计一个或多个运动任务,帮助他们完成抓握、手指伸展、拇指对握或其他动作。未来的研究应侧重于神经生理变化和功能改善,并进一步阐述运动功能恢复过程中神经生理的变化。
大脑的神经活动与身体的动力学密切相关。然而,我们的分层传感器系统如何动态地编排身体运动的产生,同时适应传入的感觉信息尚不清楚(1-4)。在小鼠中,整个电动机(M1)和一级感觉前肢(S1)皮质的编码程度以及在学习过程中如何形状的肌肉水平特征是未知的。为了解决这个问题,我们建立了一种新型的50肌肉模型,用于在物理模拟环境中研究运动控制和学习。我们表明,我们可以通过求解逆动力学并得出驱动相同动作的感觉运动控制模型来模仿在操纵杆任务中收集的3D四肢运动学。使用来自我们模型的内部计算,我们发现第2/3 M1和S1神经元的种群编码高级位置,以及下层的肌肉空间和前视性动力学。在自适应学习过程中,这些功能上不同的神经元映射到特定的计算基序。引人注目的是,S1神经元更突出地编码感觉运动预测错误。此外,我们发现在本课内学习期间,神经潜在动态在S1和M1中有所改变。一起,我们的结果提供了一个新的模型,讲述了皮质中神经动力学如何实现自适应学习。
摘要:经皮脊髓刺激 (tSCS) 可改善脊髓损伤后的上肢运动功能。许多研究试图推断 tSCS 后调节的皮质脊髓机制,其中许多研究依赖经颅磁刺激来提供皮质脊髓兴奋性的测量。其他指标(例如皮质振荡)可能为 tSCS 的生理效应提供替代和补充的视角。因此,本研究记录了 30 名健康志愿者的脑电图,以研究皮质振荡动力学是否以及如何被 10 分钟的持续颈部 tSCS 改变。参与者在将 tSCS 传递到颈部后侧的同时记录脑电图,同时进行重复的上肢运动和静息状态任务。根据每个参与者的最大耐受性(平均:50 ± 20 mA)为其量身定制 tSCS 的强度。在没有 tSCS 的情况下进行了控制会话。运动过程中感觉运动皮质活动的变化以事件相关(去)同步 (ERD/ERS) 来量化。我们的分析表明,在群体层面上,tSCS 期间 ERD 调制方向没有一致性,tSCS 和 ERD/ERS 之间也没有剂量效应。比较了 tSCS 之前和之后的静息状态振荡功率,但在 alpha 峰值频率或 alpha 功率方面没有发现统计学上显着差异。然而,与未应用 tSCS(25% ERD;p = 0.016)相比,接受最高刺激强度的参与者的 ERD/ERS(10% ERS)明显减弱,这表明皮质受到抑制。总体而言,我们的结果表明,对脊柱颈部区域进行一次 10 分钟的 tSCS 不足以在整个队列中引起感觉运动皮质活动的一致变化。然而,在高强度下,皮质水平可能会产生抑制作用。未来的研究应该以更大的样本量来调查会话持续时间和 tSCS 强度对皮质振荡的影响。
图 1. 猕猴和人类皮质层级和深度的 T1w/T2w 比率。(A、B)用于评估猕猴(A)和人类(B)皮质区域和深度的 T1w/T2w 比率的分析方法示意图。左侧面板显示猕猴的 CHARM 6 级 27,28 和人类的 Schaefer 400 29 的离散块。中间面板根据猕猴的测地线距离或人类的感觉运动关联轴标记块,颜色从黄色(感觉运动)过渡到紫色(关联)。右侧面板可视化层状组织,颜色从深蓝色(深层)过渡到浅绿色(浅层)。 (C、D) 猕猴 T1w/T2w 比值沿测地距离的分布(C,R 2 = 0.096,P < 0.001)和人类感觉运动联想 (SA) 轴的分布(D,R 2 = 0.354,P < 0.001)。 (E、F) 猕猴 (E) 和人类 (F) 感觉运动、中部和联想区域内皮质深度方向的 T1w/T2w 比值;方差分析 *** P < 0.001。
顶叶皮层中已发现几个感觉运动整合区域,这些区域似乎围绕运动效应器(例如眼睛、手)组织。我们研究了人类声道是否存在感觉运动整合区域。说话需要大量的感觉运动整合,其他能力(如发声音乐技能)也需要。最近的研究发现,颞顶叶后上部区域 Spt 区既具有感觉(听觉)又具有运动反应特性(针对语音和音调刺激)。熟练的钢琴家在听新旋律时,要么偷偷地哼唱旋律(声道效应器),要么偷偷地在钢琴上弹奏旋律(手动效应器),这时用 fMRI 测量了他们的大脑活动。与偷偷地哼唱相比,偷偷地弹奏条件下 Spt 区域的活动明显更高。前 IPS(aIPS)中的一个区域显示出相反的模式,表明它参与了感觉手动转换。这一发现表明,Spt 区是声道手势的感觉运动整合区域。© 2007 Elsevier Ltd. 保留所有权利。
抽象自闭症是一种神经发育状况,与大脑兴奋性(E)和抑制性(I)系统之间的总体失衡有关。这样的EI失衡会导致结构和功能性皮质偏差,从而改变大脑中的信息处理,最终导致自闭症特征。然而,尚未研究整个儿童和青春期的EI失衡的发展轨迹。因此,其与自闭症特征的关系尚不清楚。在本研究中,我们确定了EI平衡(F-EIB)的功能度量(F-EIB),从静止状态的电生理记录中,最终样本的92名自闭症儿童在6至17岁之间的最终样本和100个Allistist Allistist(即非自动主义)儿童(即按年龄,性别,性别和非Verbal-verbal-iq匹配)。我们将F-EIB的发展轨迹与自闭症特征的行为评估以及语言能力相关联。我们的结果表明,与同类儿童相比,自闭症的差异性EI伴随。重要的是,F-EIB价值观的发展轨迹与个人语言能力有关。特别是,在儿童晚期和青春期早期的兴奋性与听力理解的下降有关。我们的发现提供了反对自闭症儿童的普遍EI失衡的证据,纠正非语言智商。相反,我们表明,EI余额的发展轨迹与自闭症特征发展的差异在特定年龄范围内。这与抑制性脑活动的晚期发展是自闭症特征的关键基础的提议一致。
1。国际大脑,音乐和声音研究实验室(BRAMS),加拿大蒙特利尔2。部门心理学,蒙特利尔大学,蒙特利尔,加拿大蒙特利尔3。 大脑,语言和音乐研究中心(CRBLM),加拿大蒙特利尔4。 欧洲群岛,蒙彼利埃大学,蒙彼利埃,法国5。 部门 心理学,魁北克大学的Trois-Rivières,Trois-Rivières,Canada 6。 部门 荷兰马斯特里赫特市马斯特里奇大学神经心理学与心理药理学7。 部门 神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡心理学,蒙特利尔大学,蒙特利尔,加拿大蒙特利尔3。大脑,语言和音乐研究中心(CRBLM),加拿大蒙特利尔4。欧洲群岛,蒙彼利埃大学,蒙彼利埃,法国5。 部门 心理学,魁北克大学的Trois-Rivières,Trois-Rivières,Canada 6。 部门 荷兰马斯特里赫特市马斯特里奇大学神经心理学与心理药理学7。 部门 神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡欧洲群岛,蒙彼利埃大学,蒙彼利埃,法国5。部门心理学,魁北克大学的Trois-Rivières,Trois-Rivières,Canada 6。部门荷兰马斯特里赫特市马斯特里奇大学神经心理学与心理药理学7。部门神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡
1。国际大脑,音乐和声音研究实验室(BRAMS),加拿大蒙特利尔2。部门心理学,蒙特利尔大学,蒙特利尔,加拿大蒙特利尔3。 大脑,语言和音乐研究中心(CRBLM),加拿大蒙特利尔4。 华沙经济学与人类科学大学,波兰,波兰5。 欧罗马夫,蒙彼利埃大学,蒙彼利埃,法国6。 部门 心理学,魁北克大学的Trois-rivières,Trois-Rivières,Trois-Rivières,加拿大7。 部门 Maastricht University,Maastricht,Maastricht,Maastricht的神经心理学与心理药理学8. 部门 神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡心理学,蒙特利尔大学,蒙特利尔,加拿大蒙特利尔3。大脑,语言和音乐研究中心(CRBLM),加拿大蒙特利尔4。华沙经济学与人类科学大学,波兰,波兰5。欧罗马夫,蒙彼利埃大学,蒙彼利埃,法国6。部门心理学,魁北克大学的Trois-rivières,Trois-Rivières,Trois-Rivières,加拿大7。部门Maastricht University,Maastricht,Maastricht,Maastricht的神经心理学与心理药理学8. 部门 神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡Maastricht University,Maastricht,Maastricht,Maastricht的神经心理学与心理药理学8.部门神经心理学,麦克斯·普朗克人类认知与脑科学研究所,德国莱比锡
1的记录细胞的商和估计的细胞总数(植入电极覆盖的区域近似于植入电极覆盖的区域,假设皮质厚度为2mm,密度为90K神经元每毫米3(26))。