基于事件的传感是一种相对较新的成像模态,可实现低潜伏期,低功率,高时间分解和高动态范围采集。这些支持使其成为边缘应用和在高动态范围环境中的高度可取的传感器。截至今天,大多数基于事件的传感器都是单色的(灰度),在单个通道中捕获了Visi-ble上广泛光谱范围的光。在本文中,我们介绍了穆斯特朗事件并研究了它们的优势。尤其是我们在可见范围内和近红外范围内考虑多个频段,并探索与单色事件和用于面部检测任务的传统多光谱成像相比的潜力。我们进一步发布了第一个大型双峰面检测数据集,其中包含RGB视频及其模拟色彩事件,N-Mobiface和N-Youtubefaces,以及带有多光谱视频和事件的较小数据集,N-SpectralFace。与常规多频谱图像的早期融合相比,多阶段事件的早期融合可显着改善面部检测性能。此结果表明,相对于灰度等效物,多光谱事件比传统的多光谱图像具有相对有用的有关场景的信息。据我们所知,我们提出的方法是关于多光谱事件的首次探索性研究,特别是包括近红外数据。
在2007年仅1%(经济与和平研究所,2022年)。在非洲,与世界其他地区一样,技术创新一直塑造了冲突的动力。在计算和人工智能的发展方面的进步(AI)对推进暴力极端主义(VE)产生了广泛的影响(海德堡国际冲突研究所(HIIK),2022年; RAN,2021年)。一个典范,合成的计算机音频和所谓的深色假货继续捕捉到计算机图形和计算机视觉社区的想象力,同时,对技术的访问的民主化,可以创建一个可以创建任何人说话的任何人的访问权限,因为任何人都会继续关注任何事情,因为它会担心它的力量,因为它会破坏民主竞选活动,并宣布了大型竞选活动,并宣布了大型范围,并宣布了大型范围,企业范围是企业,企业范围是企业,企业范围是企业,企业范围是企业,企业范围是企业,企业范围是企业,企业范围是企业,企业范围是企业,企业范围是狂热的狂热狂热狂欢。意识形态(Agarwal,Farid,El-Gaaly和Lim,2020年; Crawford,Keen和Suarez De-Tangil,2020年)。人们不仅可以在线聊天室,游戏平台和其他在线开放式和黑暗的空间在线访问恐怖分子和极端分子的恐怖分子和极端分子的目标,而且现在可以更容易地将他们访问综合视频和那些放大暴力意识形态的人的综合视频(RAN,2021; Albahar,2017年)。通过人工智能,社交世界已成为算法,这些算法不是读取情感或面部,而是结构化的数据,可以包含在数据文件中的列表。这越来越多地是数码相机的工作。这与隶属于ISIS的非洲其他极端主义团体没有什么不同。远没有生成图像,数码相机产生的产品不仅是标准化的数据文件,其中包含数据读取器可以显示图像的数据,而且除了指定如何读取文件以及可能包含其内容的缩略图预览外,还可以启用打开标签,以及geotags,timestamps,timestamps和creptiations corpor,and timeStamps和cratecro crous和sergriations copo和sercriations coper和其他cortiation copo和sercriatiation copo和sercriations coper和其他运营(我的含量) Al。,2021)。Gambetta和Hertog先前的伊斯兰国家(ISIS)案例研究表明,工程师和技术专家在暴力的伊斯兰极端主义者中占据了由人工智能驱动的计算机视觉以推动暴力极端主义推动的计算机视觉的暴力伊斯兰极端主义者(Muro,2017年)。因此,如果可以将新技术用于错误的课程,那么它可能对人类造成的危害比人类造成的弊大于利,尤其是计算机算法,这些计算机算法可能不符合编程所需的道德规范,或者是由AI驱动的,而与人类可以区分对与错不同。由于新技术不会消失,因此需要建立人类的能力来应对其有害影响。因此,拟议的一章提供了计算机愿景的分析以及如何在非洲对在线VE建立弹性。
作为第一步,乌克兰军队专注于将其指挥和控制和将无人系统与常规武器系统相结合到单个杀戮链中,例如炮兵。Kateryna Mykhalko,UA的Tech Force,UA是乌克兰国防制造商协会,与CSIS共享,该协会设想单一杀戮链合并了侦察,并在统一的命令系统中与炮兵合并了无人驾驶飞机(UAV)。,乌克兰部队并没有直接取代传统的炮兵,而是采用较小的罢工无人机来对较小的目标进行精确攻击,侦察无人机识别和追踪。这些小型攻击耗尽了更大,更重要的目标的防御能力,使它们没有受到保护,以进行进一步的决定性炮击。
普通的英语摘要背景和研究的目的是特发性颅内高血压(IIH)是一种神经系统疾病,其特征是颅骨内部压力增加,称为颅内压(ICP)。在肥胖年龄的女性中更常见。IIH的常见症状包括头痛,视力模糊和耳朵响起。 如果未经治疗,该疾病可能会引起失明。 大多数IIH患者都通过减肥和药物治疗。 不到10%的患者会出现进行性视觉丧失,需要紧急干预以减少ICP并保留视力。 该试验将比较在英国执行的两种最常见的干预措施,并评估其临床和成本效益。 第一个被称为脑脊液(CSF)分流,并涉及一种程序,其中将一个称为分流的细管植入体内以排出脑液。 第二个称为硬脑膜静脉窦支架(DVSS),涉及一项程序,其中将称为支架的金属网管植入脑血管内。 这两个程序都可以保留视力,但是没有强有力的证据可以支持另一个程序。 参与者将有同样的机会接受CSF分流或DVSS的治疗。 试验的目的是知道哪种干预措施是保存愿景和最具成本效益的最有效的方法。IIH的常见症状包括头痛,视力模糊和耳朵响起。如果未经治疗,该疾病可能会引起失明。大多数IIH患者都通过减肥和药物治疗。不到10%的患者会出现进行性视觉丧失,需要紧急干预以减少ICP并保留视力。该试验将比较在英国执行的两种最常见的干预措施,并评估其临床和成本效益。第一个被称为脑脊液(CSF)分流,并涉及一种程序,其中将一个称为分流的细管植入体内以排出脑液。第二个称为硬脑膜静脉窦支架(DVSS),涉及一项程序,其中将称为支架的金属网管植入脑血管内。这两个程序都可以保留视力,但是没有强有力的证据可以支持另一个程序。参与者将有同样的机会接受CSF分流或DVSS的治疗。试验的目的是知道哪种干预措施是保存愿景和最具成本效益的最有效的方法。
布鲁塞尔,2025年2月19日:欧洲肥料欢迎欧盟委员会对农业和食品的愿景,该愿景认为肥料对粮食生产和供应安全至关重要,并承认迫切需要减少对非欧盟生产商的战略依赖性。欧洲工业呼吁采取专门的部门战略,以确保其在国际上保持竞争力,同时它继续在脱碳化农业食品价值链中发挥重要作用。
Safran Electronics&Defense的首席执行官Franck Saudo以及国际黄金集团(IGG)首席执行官Fadel Al Kaabi今天在阿拉伯阿拉伯联合酋长国阿布·杜比(Abu Dhabi)的塔瓦祖恩工业公园(Tawazun Industrial Park)的Optronics and Navigation Venture愿景开设了新的Optronics and Navigation Venture愿景。Optronics&Navigation的愿景是Safran Electronics&Defensics及IgG之间长期合作的结果。合资企业将是阿拉伯联合酋长国的主要新参与者,开设了专门用于研发和制造关键军事设备的卓越中心。该中心将重点关注机载,土地和海上opronics以及惯性导航,提供快速有效的支持,以满足阿拉伯联合酋长国武装部队的需求。“ Optronics&Navigation网站的正式开放是我们与国际黄金集团的战略合作伙伴关系的决定性步骤。”“这个新的卓越中心反映了我们致力于为阿联酋武装部队提供技术先进的解决方案和当地支持。一起,我们正在帮助加强区域合作伙伴的主权和运营优势,支持地方经济发展并扩大该国的国防工业基础。”该网站覆盖800平方米(8,600平方英尺),拥有现代,可扩展的设施,包括最先进的洁净室和先进的工业设备。它将创造高技能的就业机会,有助于刺激当地的经济发展并加强该国的国防工业基础。截至目前,Vision为阿拉伯联合酋长国目前在其Leclerc Tanks和其他装甲车上使用的目击系统提供了当地的支持和深入维护。通过愿景,萨弗兰电子与国防部正在建立强大的当地存在并制定全面的技术转移策略,这符合阿布扎比经济愿景2030的目标。这项倡议建立在共同的历史和萨夫兰和IgG的专业知识上,以满足阿拉伯联合酋长国武装部队和海湾合作委员会其他成员的需求。以最新的技术共享共同开发和适应系统的承诺为指导,以满足特定的本地要求,对optronics&Navigation的愿景,萨夫兰电子和国防部以及国际黄金集团正在共同努力,以维持国防工业的最高标准。
全世界持续关注着亚马逊盆地大部分地区再次发生的火灾。由于历史性的干旱和持续缺乏扑灭火灾及其根本原因的资源,火灾已经摧毁了玻利维亚、秘鲁、巴西等地数百万公顷的森林、社区和野生动物栖息地。这些火灾往往是故意为牛群或农业清理土地而纵火,在气候危机的冲击下,火灾变得更加猛烈,数百万人面临危险的空气污染。日益严重的火灾、干旱和森林砍伐使该地区越来越接近“雨林无法再生存的临界点”。这场火灾对全球的影响——再加上世界生态系统的其他临界点——令人难以想象。
1,2,3,4,6学生(CSE)KIIT被认为是大学,印度布巴内斯瓦尔,5名学生(机械)KIIT被认为是大学,印度布巴内斯瓦尔,印度摘要:本文档详细介绍了新颖的智能城市交通管理系统的设计和实施,并实现了一个新颖的智能城市交通管理系统,共同构成了互联网的能力(Intelly of Things of Things and Things and Intelly of Things and Intelly of Things and Intelly of Things and Intell of Intelly(Iot of Things and Intell)和计算机。应对现代城市交通的多方面挑战,包括拥堵,安全问题和监管依从性,该系统采用了混合边缘云建筑。智能物联网设备的分布式网络,包括配备了设备AI处理,LIDAR,雷达和环境传感器的智能相机,可捕获实时流量数据。边缘计算节点在交叉点上进行了战略性部署,进行局部数据分析,从而可以立即做出响应,例如自适应交通信号调整和优先级的紧急车辆移动。同时,云平台汇总了来自所有边缘节点的数据,促进了全面的交通模式分析,预测性建模和全系统范围的优化策略。先进的计算机视觉算法,包括基于Yolov8的对象检测,车道跟踪和行人活动识别,可为交通动态和潜在违规行为提供关键的见解。在实时和历史流量数据上训练的机器学习模型,使系统能够动态调整信号时机和预测拥堵热点。与现有的流量基础架构和用于实时流量信息传播的用户友好的移动应用程序集成也是关键功能。本文档探讨了系统的体系结构,硬件和软件组件的相互作用,通信协议,开发生命周期以及缓解关键挑战(例如可扩展性,安全性和延迟)。简介:城市环境的复杂性日益增加,再加上车辆数量的不断增长,加剧了交通管理的挑战。传统系统通常证明不足以解决当代交通流量的动态和多方面的性质。本文档介绍了一个具有前瞻性的智能城市交通管理系统,该系统利用物联网,计算机视觉和云计算的综合优势来创建一个更聪明,响应和可持续的交通生态系统。核心目标是优化交通流量,改善所有道路使用者的道路安全性,最大程度地减少环境影响,并通过实时交通智能增强交通当局和公众的能力。通过战略性地部署边缘计算资源,该系统实现了关键决策的实时响应能力,而云平台为长期流量优化和战略计划提供了必要的可扩展性和分析能力。以下各节详细介绍了系统的架构,组成部分和实现路线图,强调
1 引言 量子最优控制理论 (QOCT) 是指一套设计和实现外部电磁场形状的方法,这些电磁场以最佳方式操纵原子或分子尺度上的量子动力学过程 [246]。它建立在更通用的控制理论的基础上,控制理论是在应用数学、工程学和物理学交叉领域发展起来的,涉及操纵动态过程以实现特定任务。主要目标是使所研究的动态系统以最优方式运行并达到其物理极限,同时满足现有设备施加的约束。量子过程也不例外,但控制理论的某些方面必须进行调整,以考虑到量子世界的特殊性。过去几年中,QOCT 已成为新兴量子技术不可或缺的一部分 [6],证明了控制将科学知识转化为技术 [246]:如果叠加原理是量子力学的核心特征,那么量子控制就是叠加原理在起作用。量子技术需要相对隔离良好、特性良好的量子系统。与化学反应动力学等使用 QOCT 的其他领域相比,这一特性使其成为 QOCT 的理想试验台。另一方面,QOCT 已经成熟到如今已可在实验中使用。QOCT 的下一个挑战是成为一种