特定客户,由美国材料与试验协会为在版权许可中心 (CCC) 交易报告服务中注册的用户提供,前提是基本费用为每份 2.50 美元,外加每页 0.50 美元,直接支付给 CCC,地址:27 Congress St., Salem, MA 01970;电话:(508) 744-3350。对于已获得 CCC 复印许可的组织,已安排了单独的付款系统。交易报告服务用户的费用代码为 0-8031-1870-8/93 $2.50 + .50。
摘要:慢病毒载体是疫苗接种最有效的病毒载体之一。与参考腺病毒载体形成鲜明对比的是,慢病毒载体在体内转导树突状细胞方面具有很高的潜力。在这些细胞中,慢病毒载体最能有效地激活幼稚 T 细胞,它们诱导转基因抗原的内源性表达,这些抗原可直接进入抗原呈递途径,而无需外部抗原捕获或交叉呈递。慢病毒载体可诱导强大、强劲和持久的体液、CD8 + T 细胞免疫力,并有效预防多种传染病。人类群体对慢病毒载体没有预先存在的免疫力,这些载体的促炎特性非常低,为它们在粘膜疫苗接种中的应用铺平了道路。在这篇综述中,我们主要总结了慢病毒载体的免疫学方面、它们最近诱导 CD4 + T 细胞的优化,以及我们最近在临床前模型中使用慢病毒载体进行疫苗接种的数据,包括预防黄病毒、SARS-CoV-2 和结核分枝杆菌。
动机和总体愿景 近年来,人工智能系统取得了长足进步,带来了许多成功的应用,这些应用渗透到了我们的日常生活中。然而,我们看到的仍然是狭义人工智能的例子:这些发展通常都集中在一组非常有限的能力和目标上,例如图像解释、自然语言处理、标签分类、预测等等。此外,虽然这些成功可以归功于改进的算法和技术,但它们也与海量数据集和计算能力的可用性密切相关(Marcus 2020)。最先进的人工智能仍然缺乏许多自然包含在智能概念中的能力,例如,如果我们将这些人工智能技术与人类能够做的事情进行比较。这些能力的例子包括可概括性、鲁棒性、可解释性、因果分析、抽象、常识推理、道德推理,以及由隐性和显性知识支持的复杂而无缝的学习和推理集成。目前,人工智能社区的大多数人正在尝试解决人工智能的当前局限性,并使用各种方法创建能够显示更多类似人类特质的系统。主要争论之一是端到端神经网络方法是否可以实现这一目标?或者我们是否需要将机器学习与符号和基于逻辑的人工智能技术相结合?我们认为集成路线是最有前途的,并且
特定客户,由美国材料与试验协会为在版权许可中心 (CCC) 交易报告服务中注册的用户提供,前提是基本费用为每份 2.50 美元,外加每页 0.50 美元,直接支付给 CCC,地址:27 Congress St., Salem, MA 01970;电话:(508) 744-3350。对于已获得 CCC 复印许可的组织,已安排了单独的付款系统。交易报告服务用户的费用代码为 0-8031-1870-8/93 $2.50 + .50。
神经科学中普遍存在的挑战正在测试由于特定原因,例如刺激,事件或临床干预措施,神经元连通性是否随时间变化。最近的硬件创新和数据存储成本下降,可以使更长,更自然的神经元记录。理解自组织的大脑要求使用新分析方法的隐性机会,这些方法是将时间尺度联系起来的新分析方法:从神经元动力学的毫秒顺序,到几分钟,几天甚至几年的实验观察结果不断发展的顺序。本评论文章展示了分层生成模型和贝叶斯推论如何有助于表征不同时间尺度上的神经元活动。至关重要的是,这些方法超出了描述观测之间的统计关联,还可以推断潜在机制。我们提供了国家空间建模中基本概念的概述,并为这些方法提出了分类法。此外,我们引入了关键的数学原理,这些原理强调了时间尺度的分离,例如奴隶原理,并回顾了用多尺度数据来测试大脑的假设的贝叶斯方法。我们希望这篇综述将成为在复杂系统建模文献中在最新技术状态和当前旅行的实验和计算神经科学家的有用底漆。
晚发型或青少年特发性脊柱侧弯 (AIS) 是一种三维脊柱异常,在 10 至 16 岁儿童中发病率为 1–3%[1–4]。由于 AIS 的病因不明[5],干预措施针对的是解剖结构畸形,而不是畸形的根本原因。最近的证据表明,前庭系统可能在 AIS 的病因中发挥作用[6–9],因为它会影响下丘脑、小脑和前庭脊髓通路[10]。前庭系统由耳石器和三个正交半规管 (SCC) 组成 [11]。每个半规管都与对侧的半规管协同工作。角加速度会导致 SCC 内的毛细胞偏转,从而提供有关运动方向和强度的传入信号 [12, 13]。这些信号共同有助于平衡和姿势控制。角加速度敏感性与管道形态直接相关 [14],这表明任何结构异常都可能导致下游效应,包括平衡受损和姿势肌肉活动受损。由于 SCC 在出生时具有固定的大小和形状 [10, 15, 16],异常可能通过激活负责躯干支撑的棘旁肌在 AIS 的发病机制中起早期致病或促成作用 [3]。先前的研究发现,与正常对照组相比,AIS 患者存在前庭形态异常 [10, 17]。然而,关于 SCC 管道形态在 AIS 中的作用存在争议 [18, 19]。我们的目标是建立一种新颖的半规管成像方法,以评估鳞状细胞癌和 AIS 解剖变异之间的关联。我们测试了 AIS 患者的鳞状细胞癌几何形状的左右差异是否与对照组相比被夸大。
摘要:本研究提出了一种创新方法,该方法基于低成本红外热成像 (IRT) 仪器的使用,以实时评估脊柱侧弯支具的有效性。确定脊柱侧弯支具的有效性意味着决定支具对患者背部施加的压力是否足以达到预期的治疗目的。传统上,支具有效性的评估依赖于骨科医生在常规随访检查中进行的经验性定性评估。因此,它在很大程度上取决于相关骨科医生的专业知识。在现有技术中,用于确认骨科医生意见的唯一客观方法是基于对脊柱侧弯随时间进展情况的评估,这通常会使人们暴露在电离辐射下。为了解决这些局限性,本研究提出的方法旨在以无害的方式实时、客观地评估脊柱侧弯支具的有效性。这是通过利用热弹效应并将患者背部的温度变化与支架施加的机械压力相关联来实现的。基于此方法的系统已实施,并通过在一家经认可的骨科中心对 21 名患者进行的实验研究进行了验证。实验结果表明,在区分充足和不足压力方面,分类准确率略低于 70%,鉴于此类系统在骨科中心的临床应用,这是一个令人鼓舞的结果,有望进一步推进。
,我们基于马传染性贫血病毒(EIAV)开发了一种非青春期的慢病毒载体,以有效地转移到中枢和周围神经系统。以前,我们已经证明,用狂犬病病毒糖蛋白赋予慢病毒载体的伪型载体会赋予这些载体逆行轴突转运。在本研究中,我们成功地生产了用纹状病毒囊炎病毒(VSV)血清型(Indiana和Chandipura菌株)中的膜糖蛋白伪型的高素质EIAV载体;狂犬病病毒[各种Evelyn – rokitnicki – Abelseth时代菌株和挑战病毒标准(CVS)]; Lyssavirus Mokola病毒,一种与狂犬病有关的病毒;和铁纳病毒淋巴细胞性绒毛膜炎病毒(LCMV)。通过直接注射将这些载体传递到成年大鼠或新生小鼠的肌肉的纹状体或脊髓上。我们报告说,慢病毒载体被VSV印第安纳菌株,野生型ERA和CVS菌株的信封进行拟型型,导致纹状体的强大转导,而Mokola和LCMV-Pseudotyped载体则分别表现出中度和弱的转导。此外,ERA-和CVS-PESEUDYTY型慢病毒载体在脑,脊髓和肌肉中注射后远端神经元表现出逆行的运输和表达。这些包膜糖蛋白赋予的转导效率和逆行运输的差异在设计不同神经系统疾病的治疗策略方面提供了新的机会。
从每毫升的ANJ -DNA-LVV滴度中稳定为“感染性滴度”(TU/mL),“粒子滴度”(LVV粒子数/mL),通过在LVV sibletestrantandsdated(a)中通过RT-QPCR评估的“基因组滴度”(A)。ong-项和估计在变形后第17天进行,并量化了进入Jurkat基因组的LVV(b)。.anjl anj-DNA具有完全功能性,能够稳定地整合到宿主细胞的基因组中。
慢速教学法旨在让孩子们有机会通过游戏深入学习。它注重深度和建立联系,而不是浅薄、分离的学习活动。这可能涉及重新考虑时间表和惯例,以通过“不碎片化”或“延长”的时间来支持更长时间的不间断游戏(Cuffaro 1995,第 31 页)。第一手的真实体验是关键,可以创造“学习的宝库”(Whinnett 2024,第 178 页)。与孩子们深入交流提醒我们,教育者在支持这一过程中发挥着重要作用,这可能涉及让孩子们有机会体验“有指导的自由”(Liebschner 2001,第 135 页)。
