本文系统地比较了采用相同 CMOS 后端工艺的 CPW、慢波 CPW、微带和慢波微带的传输线特性阻抗与 Q 因子之间的关系。结果表明,最佳 Q 因子的特性阻抗取决于慢波传输线的地线间距。虽然从传播模式的角度来看,介质相似,但当慢波 CPW 的特性阻抗为 §23 ȍ 和慢波微带线的特性阻抗为 §43 ȍ 时,慢波传输线可实现 60 GHz 最佳 Q 因子,并且接地平面间隙越宽,Q 因子就越大。此外,结果表明,在芯片面积相同的情况下,慢波 CPW 的最佳 Q 因子比慢波微带高 12%。这里提供的数据可用于选择 CMOS 中 S-MS 和 S-CPW 无源器件的 Z 0 值,以最大化传输线 Q 因子。
青少年特发性脊柱侧弯(AIS)是三维和多因素脊柱畸形,是小儿种群中最常见的脊柱侧弯类型,占所有特发性脊柱侧弯病例的近90%。通过确认COBB角>10⁰的诊断,并伴有椎骨旋转[1]。到目前为止进行的流行病学研究表明,根据该地区,种族,遗传和环境因素或医疗保健系统的访问,AIS可能会影响全球0.93%至12%的受试者[2]。其患病率和脊柱曲率进展的趋势在女性中较高[3]。脊柱侧弯,无论其病因如何,都与许多局限性和躯体合并症有关[4]。据估计,即使有32%的AI受试者也可能会感到心理和情绪困扰[5]。还报道说,具有AIS诊断的受试者更有可能患有各种精神障碍,包括抑郁,焦虑或饮食[6]。然而,这组患者的焦虑和抑郁症的确切发生率在大多数国家仍然未知,可能从<5.0%到> 90.0%不等。[6,7]。这些差异可能是由于缺乏足够的流行病学研究,已经进行的研究质量不足或所使用的测量工具的差异所致。因此,确定潜在因素似乎可靠,这可能会对这些精神障碍的发展产生重大影响,以更好地理解这种现象并采取适当的预防或治疗行为。在全球青少年的精神障碍发病率高的情况下,这个问题变得更加重要,这可能会影响25.0至31.0%的受试者[8]。
摘要:CRISPR/CAS技术通过提供对基因组序列和表达的无与伦比的控制,彻底改变了基因组和表观基因组编辑的领域。慢病毒载体(LV)系统是CRISPR/CAS系统的主要输送车辆之一,因为(i)其携带笨重且复杂的转基因的能力以及(ii)在体外和体内的广泛分裂和非分裂细胞中维持强大而长期的长期表达。因此,合理地将大量努力分配为开发改进和优化的LV系统,以进行有效,准确的CRISPR/CAS工具转移基因转移。这一目的的主要努力是为了改善和优化矢量的表达,整合酶溶剂较高的慢病毒载体(IDLV)的发展,旨在最大程度地减少致癌性,毒性和致病性的风险以及增强临床应用的制造方案。在这篇综述中,我们将注意(i)慢病毒的基本生物学,以及(ii)开发更安全且有效的CRISPR/CAS矢量系统的最新进展,用于在临床前和临床应用中的使用。此外,我们将详细讨论与基础编辑和原始编辑应用相关的CRISPR/CAS系统的重新使用方面的最新进展。
摘要:基于黄单胞菌转录激活因子样效应 (TALE) 的 DNA 结合结构域 (DBD) 的设计效应是强大的序列特异性工具,因其在编辑基因组、转录组以及最近的表观基因组方面的特异性而享有盛誉。然而,组成 DBD 的 TALE 阵列的重复结构阻碍了它们作为基因合成产物的生成,并阻止了使用慢病毒载体 (LV)(一种广泛用于人类基因治疗的系统)递送基于 TALE 的基因。为了克服这些限制,我们旨在通过引入足够的多样性来嵌合编码 TALE-DBD 的 DNA 序列,以促进它们的基因合成和实现慢病毒递送。为此,我们用来自细菌伯克霍尔德菌的 TALE 样单元替换了 17 个黄单胞菌 TALE 重复序列中的 3 个。这与整个 DBD 中的广泛密码子变异和特定氨基酸替换相结合,以最大限度地提高重复序列内和重复序列间的变异性。我们证明,使用传统的 Golden Gate 克隆策略或基因合成可以轻松生成嵌合 TALE。此外,嵌合化使得使用慢病毒载体递送基于 TALE 的设计核酸酶、转录组和表观基因组编辑器成为可能。当以质粒 DNA 递送时,靶向 CCR5 和 CXCR4 基因座的嵌合 TALE 在人体细胞中显示出类似的活性。然而,基于 TALE 的转录激活因子的慢病毒递送仅在嵌合形式下才成功。同样,递送嵌合的 CXCR4 特异性表观基因组编辑器会导致内源性 CXCR4 表达快速沉默。总之,基于 TALE 的 DBD 的广泛密码子变异和嵌合使得设计 TALE 的生成和慢病毒递送变得简单,因此有利于这些工具的临床应用,以精确编辑基因组、转录组和表观基因组。
可以在纳米级上操纵光和物质的量子状态,以提供有助于实施可扩展光子量子技术的技术资源。实验进步取决于光子和量子发射器内部自旋状态之间耦合的质量和效率。在这里,我们演示了一个带有嵌入式量子点(QD)的纳米光子波导平台,该平台既可以实现Purcell-Enhathenced发射和强性手性耦合。设计在滑动平面光子晶体波导中使用慢光效应,并使用QD调整,将发射频率与慢灯区域匹配。模拟用于绘制手性,并根据偶极子发射极相对于空气孔的位置来绘制手续的增强。最高的purcell因子和手性发生在单独的区域中,但是仍然有一个显着的区域,可以获得两者的高值。基于此,我们首先证明了与20±2倍purcell增强的相对应的巨大辐射衰减率为17±2 ns -1(60±6 ps寿命)。这是通过将QD的电场调整到慢灯区域和准共振的声子端谱带激发来实现的。然后,我们证明了具有高度的手性耦合到波导模式的DOT的5±1倍purcell增强功能,实质上超过了所有先前的测量值。共同证明了使用依靠手性量子光学元件的芯片旋转光子剂的可扩展实现中使用QD的出色前景。
肌动蛋白 ( MYOC ) 突变是已知的原发性开角型青光眼的主要遗传原因,约占所有病例的 4%。MYOC 突变会导致功能获得性表型,其中突变的肌动蛋白会在内质网 (ER) 中积聚,导致 ER 应激和小梁网 (TM) 细胞死亡。因此,在基因组水平上敲除肌动蛋白是永久治愈该疾病的理想策略。我们之前已成功利用 CRISPR/Cas9 基因组编辑通过腺病毒 5 (Ad5) 靶向 MYOC。但是,Ad5 不是适合临床使用的载体。在这里,我们试图确定腺相关病毒 (AAV) 和慢病毒 (LV) 靶向 TM 的功效。首先,我们通过玻璃体内 (IVT) 和前房 (IC) 注射检查了单链 (ss) 和自互补 (sc) AAV 血清型以及表达 GFP 的 LV 的 TM 趋向性。我们观察到 LV_ GFP 表达对通过 IVT 途径注射的 TM 更具特异性。色氨酸突变体 scAAV2 的 IC 注射显示 TM 中 GFP 的显著表达。然而,在睫状体和视网膜中也观察到了强劲的 GFP 表达。我们接下来构建了表达 Cas9 和靶向 MYOC (crMYOC) 的引导 RNA (gRNA) 的慢病毒颗粒,并用 LV_cr MYOC 转导稳定表达突变型肌动蛋白的 TM 细胞可显著减少肌动蛋白积累及其相关的慢性 ER 应激。在 Tg-MYOC Y437H 小鼠中单次 IVT 注射 LV_cr MYOC 可减少 TM 中的肌动蛋白积累并显著降低升高的眼压。总之,我们的数据表明,LV_cr MYOC 靶向 TM 中的 MYOC 基因编辑并挽救了肌动蛋白相关青光眼的小鼠模型。
Bernard-Soulier综合征(BSS)是一种罕见的先天性疾病,其特征是巨骨细胞减少症和频繁出血。它是由三个基因(GP1BA,GP1BB或GP9)中的致病变异引起的,该变异编码为GPIB A,GPIB B和GPIB-V-IX复合物的GPIB A,GPIB B和GPIX亚基,这是Von Willebrand因子的主要血小板表面受体,是Von Willbrand因子的主要血小板受体,对于血小板粘附和聚集而言是必不可少的。根据受影响的基因,我们区分BSS型A1(GP1BA),B型(GP1BB)或C型C(GP9)。这些基因中的致病变异会导致缺乏,不完整或功能障碍的GPIB-V-IX受体,从而导致出血表型。使用基因编辑工具,我们生成了敲除(KO)人类细胞模型,这些模型帮助我们更好地理解了GPIB-V-IX复合体组装。此外,我们开发了能够纠正人类GP9 -KO巨型巨细胞细胞系中GPIX表达,定位和功能的新型慢病毒载体。生成的GP9 -KO诱导的多能干细胞产生了血小板,该血小板概括了BSS表型:膜表面和大尺寸的GPIX不存在。重要的是,基因疗法工具恢复了这两个特征。最后,用基因治疗载体转移了来自两个无关BSS患者的造血干细胞,并分化为表达GPIX的巨核细胞和血小板,大小降低。这些结果证明了基于慢性的基因疗法挽救BSS的潜力。
在开放式云的IBM量子设备上进行的摘要实验用于使用[4、2、2]编码的栅极序列来表征其容错。在IBMQ_BOGOTA和IBMQ_SANTIAGO设备中激活了多达100个逻辑门,我们发现[4,2,2,2]代码的逻辑门集可以被视为大于10门的门序列的故障耐受性。但是,某些电路不满足容错标准。在某些情况下,编码的门序序列显示出高的错误率,该误差率在≈0处较低。1,因此,这些电路中固有的误差无法通过经典后选择来减轻。实验结果与简单错误模型的比较表明,主要的门错误不能以流行的Pauli误差模型来表示。最后,当测试的电路仅限于产生较低尺寸的输出状态的电路时,评估容错标准是最准确的。
目的:编码低COMT和MTHFR活性的遗传变异与特发性脊柱侧弯有关。COMT和MTHFR对青少年特发性脊柱侧弯(AIS)进展的综合影响尚不清楚。这项研究调查了COMT和MTHFR低活性变体是否与AIS进程相关。方法:AIS的患者,至少两次COBB角度测量在青春期,以及低COMT(RS4680 AA)和低MTHFR(A1298C AC和C677T CT; A1298C AA和C677T TT)的患者(A1298C AC和C677T)活性(1组)或GG(组1) (A1298C AA和C677T CT; A1298C AC和C677T CC; A1298C AA和C677T CC)活动(第2组)。排除了神经肌肉或综合脊柱侧弯的人。主要结果是脊柱侧弯的进展,被定义为诊断和骨骼成熟时间之间至少20度或脊柱手术的COBB角增加。通过卡方检验分析了主要结果。结果:具有AIS诊断和所需COBB角度测量的72名患者的COMT和MTHFR结果符合第1组(n = 41)或第2组(n = 31)的标准。关于主要结果,第1组中的78.0%(32/41)进展,第2组患者的48.4%(15/31)(p = 0.009)。结论:与COMT和MTHFR的中间或正常活性变异的患者相比,低COMT和低MTHFR活性变异的患者具有AIS的进展。进一步了解COMT和MTHFR的作用可能会为有关治疗方式的研究提供信息。
蓝斑 (LC) 是去甲肾上腺素能投射到前脑的主要来源,在前额叶皮层中,它与决策和执行功能有关。睡眠期间,LC 神经元与皮层慢波振荡相位锁定。尽管人们对这种慢节奏感兴趣,但由于它们与行为的时间尺度相对应,因此在清醒状态下很少报告这种慢节奏。因此,我们研究了在执行注意力转移任务的清醒大鼠中,LC 神经元与超慢节奏的同步性。前额叶皮层和海马中的局部场电位 (LFP) 振荡周期约为 0.4 Hz,与关键迷宫位置的任务事件相位锁定。事实上,超慢节奏的连续周期显示出不同的波长,因此这些不是周期性振荡。同时记录的前额叶皮层和海马中的超慢节奏也显示出不同的周期持续时间。这里记录的大多数 LC 神经元(包括光遗传学识别的去甲肾上腺素能神经元)都与这些超慢节律相位锁定,LFP 探针上记录的海马和前额叶单元也是如此。超慢振荡还对伽马振幅进行相位调制,将这些行为时间尺度上的节律与协调神经元同步的节律联系起来。LC 神经元与超慢节律协同释放的去甲肾上腺素将有助于同步或重置这些大脑网络,从而实现行为适应。
