FlowCode是一个软件程序,允许用户以简单的方式快速,轻松地开发复杂的电子系统,可与一系列微控制器一起使用,包括Microchip的“ PIC'Microcrocontrollers(PIC MCUS),Arduino和Arm”。FlowCode本身是微控制器中性的 - 无论使用哪种微控制器,它几乎与用户界面相同。差异在硬件和程序下载和测试的方式中。
我们为在工人合作社中进行生产的动态经济发展并形式化了一个平衡概念。该概念排除了工人对合作社的分配,其中一个合作社的工人可以转移到不同的合作社,并使自己和现有的合作社中的现有工人都更好。它还排除了分配,其中其他一些工人离开的工人将使合作社的工人更好地做出分配。我们还提供了最小信息均衡选择标准,该标准可以运行我们的均衡概念。我们说明了我们的概念和操作的应用,在与特定的偏好和技术的重叠后代经济的背景下。合作经济遵循的动态路径在与道路之后的道路上相似,其次是资本主义经济,其逐渐收敛到具有恒定产出的稳定状态。量化的合作经济具有静态的不可能,因为对于给定的总资本库存,企业规模小于社会计划者所选择的企业。另一方面,合作经济可能不会动态地有效,并且可以以高于或低于资本主义经济的速度积累资本。我们还提出了一种说明性的校准,该校准可以定量比较合作社和资本主义经济中的稳态收入。
离散扩散或流模型可以比自回归模型更快,更可控制的序列产生。我们表明,单纯形上的线性流匹配不足以实现该目标,因为它遭受了训练目标和进一步的病理的差异。为了克服这一点,我们基于Dirichlet分布作为概率路径的混合物在单纯形上开发了Dirichlet流量匹配。在此框架中,我们在混合物的分数和流量的矢量字段之间得出了一个连接,允许分类器和无分类器指导。此外,我们提供了蒸馏的Dirichlet流量匹配,从而使一步序列产生具有最小的性能命中率,与自动回旋模型相比,O(L)的加速导致O(L)的加速。在复杂的DNA序列生成任务上,我们证明了与分布指标的所有基准相比,在实现生成序列的所需设计目标方面相比。最后,我们表明我们的指导方法改善了无条件的生成,并且可以生成满足设计目标的DNA。
离散扩散或流模型可以比自回归模型更快,更可控制的序列产生。我们表明,单纯形上的线性流匹配不足以实现该目标,因为它遭受了训练目标和进一步的病理的差异。为了克服这一点,我们基于Dirichlet分布作为概率路径的混合物在单纯形上开发了Dirichlet流量匹配。在此框架中,我们在混合物的分数和流量的矢量字段之间得出了一个连接,允许分类器和无分类器指导。此外,我们提供了蒸馏的Dirichlet流量匹配,从而使一步序列产生具有最小的性能命中率,与自动回旋模型相比,O(L)的加速导致O(L)的加速。在复杂的DNA序列生成任务上,我们证明了与分布指标的所有基准相比,在实现生成序列的所需设计目标方面相比。最后,我们表明我们的指导方法改善了无条件的生成,并且可以生成满足设计目标的DNA。
我们提出了无模拟分数和流匹配([SF] 2 m),这是一种用于推断自随机动力学的无模拟Objective,给出了从任意源和目标分布中绘制的未配对样品。我们的方法一般 - 扩散模型训练中使用的得分匹配损失以及最近提出的流量匹配损耗用于训练连续归一化流量。[SF] 2 m将连续的随机构成建模为Schrödinger桥概率。它依赖于静态熵调查的最佳传输或Minibatch近似,以有效地学习SB,并使用模拟学习的随机过程。我们发现[SF] 2 m更有效,并且比先前的工作中基于仿真的方法为SB问题提供了更准确的解决方案。最后,我们将[SF] 2 m应用于快照数据学习细胞动力学的问题。值得注意的是,[SF] 2 m是在高维度中准确模拟细胞dynamics的第一种方法,并且可以从模拟数据中恢复已知的基因调节网络。我们的代码可在https://github.com/ atong01/conditional-flow-matching的TorchCFM软件包中找到。
摘要 心流是一种最佳或高峰体验状态,通常与专业和创造性表现有关。音乐家在演奏时经常体验到心流,然而,由于神经数据中存在大量伪影,这种难以捉摸的状态背后的神经机制仍未得到充分探索。在这里,我们通过关注心流体验后立即进入的静息状态来绕过这些问题。音乐家演奏了预期会可靠地引发心流状态的乐曲,并作为对照,演奏了不会引发心流的音乐作品。在心流状态之后,我们观察到上部 alpha(10-12 Hz)和 beta(15-30 Hz)波段的频谱功率更高,主要是在大脑前额叶区域。使用相位斜率指数进行的连接分析显示,右额叶簇影响了 θ(5 Hz)波段左颞叶和顶叶区域的活动,在报告高倾向性心流的音乐家中尤其明显。前顶叶控制网络内的 θ 波段连接促进了认知控制和目标导向注意力,这对于实现心流状态可能至关重要。这些结果揭示了与音乐家的即时心流后状态相关的大规模振荡相关性。重要的是,该框架有望在实验室环境中探索心流相关状态的神经基础,同时保持生态和内容有效性。
动机和总体愿景 近年来,人工智能系统取得了长足进步,带来了许多成功的应用,这些应用渗透到了我们的日常生活中。然而,我们看到的仍然是狭义人工智能的例子:这些发展通常都集中在一组非常有限的能力和目标上,例如图像解释、自然语言处理、标签分类、预测等等。此外,虽然这些成功可以归功于改进的算法和技术,但它们也与海量数据集和计算能力的可用性密切相关(Marcus 2020)。最先进的人工智能仍然缺乏许多自然包含在智能概念中的能力,例如,如果我们将这些人工智能技术与人类能够做的事情进行比较。这些能力的例子包括可概括性、鲁棒性、可解释性、因果分析、抽象、常识推理、道德推理,以及由隐性和显性知识支持的复杂而无缝的学习和推理集成。目前,人工智能社区的大多数人正在尝试解决人工智能的当前局限性,并使用各种方法创建能够显示更多类似人类特质的系统。主要争论之一是端到端神经网络方法是否可以实现这一目标?或者我们是否需要将机器学习与符号和基于逻辑的人工智能技术相结合?我们认为集成路线是最有前途的,并且
特定客户,由美国材料与试验协会为在版权许可中心 (CCC) 交易报告服务中注册的用户提供,前提是基本费用为每份 2.50 美元,外加每页 0.50 美元,直接支付给 CCC,地址:27 Congress St., Salem, MA 01970;电话:(508) 744-3350。对于已获得 CCC 复印许可的组织,已安排了单独的付款系统。交易报告服务用户的费用代码为 0-8031-1870-8/93 $2.50 + .50。