在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
本次拟发行股份不超过 10,000.00 万股,且占发行后总股本的 比例不低于 25% ,超额配售部分不超过本次新股发行总数的 15% 。若全额行使超额配售选择权,则本次发行股票的数量 不超过 11,500.00 万股。 本次发行均为新股,不安排股东公开发售股份。
Blatt 是精密光谱学、量子计量学和量子信息处理领域的专家。他的研究对象是被捕获在离子阱中的原子,并用激光束对其进行操纵。这项工作基于与理论家 Ignacio Cirac 和 Peter Zoller 的合作以及他们在 20 世纪 90 年代中期提出的建议。2003 年,Blatt 的团队首次实现了 Cirac-Zoller 提出的纠缠操作;2004 年,Blatt 的工作组首次成功将一个原子的量子信息以完全受控的方式转移到另一个原子上(隐形传态)。科学杂志《自然》报道了这项实验,并将其放在封面上。两年后,Rainer Blatt 的工作组已经成功以受控方式纠缠了多达 8 个原子。第一个“量子字节”(qubyte)的创建使我们在迈向量子计算机的道路上又迈出了一步。 2011 年,该团队成功将这一记录提高到 14 个纠缠原子,自 2018 年以来,他们经常使用 20 个完全受控的离子量子比特进行工作。自 2011 年以来,Blatt 的团队朝着成功进行量子纠错迈出了重要一步,并成功地用七个物理量子比特编码了一个逻辑量子比特。从那时起,该团队还实现了一个通用量子模拟器,进行了开放系统量子模拟,并首次展示了格点规范理论的量子模拟。目前,Blatt 的团队经常使用两台量子计算机,致力于实现可扩展的量子计算和量子模拟。他还以支持年轻科学家而闻名。他的几位助手获得了著名奖项,并被任命为国外大学的教授。
丹尼尔 T. 冯汤姆先生是新墨西哥州科特兰空军基地 (AFB) 空军研究实验室、空间飞行器理事会企业信息部主管。他领导着一支由 50 多名文职和承包商员工组成的团队,支持空间飞行器和定向能理事会 1700 多名人员的信息技术需求。冯汤姆先生曾担任过空军士兵、军官、承包商,现在是空军文职人员。他职业生涯的大部分时间都奉献给了科特兰空军基地的空军研究实验室。冯汤姆先生最初担任高空气球实验 (HABE) 副项目经理,成功领导并将这项风险降低工作转变为天基激光项目。在进入公共服务部门之前,作为诺斯罗普·格鲁曼公司的高级工程师,冯汤姆先生帮助 AFRL 开发了一个一流的卫星测试设施,现在被多个机构使用,对硬件进行飞行前的严格测试。 2020 年 1 月,冯·汤姆先生被选为菲利普斯研究站点 IT 部门负责人。 教育经历 1998 年,中央华盛顿大学,行政管理学士 1998 年,阿拉巴马州麦克斯韦空军基地,航空航天基础课程 2001 年,圣达菲学院,计算机科学学士 2001 年,圣达菲学院,工商管理硕士 工作经历 1. 1992 年 8 月 - 1994 年 7 月,行政管理专家,佐治亚州穆迪空军基地 2. 1994 年 7 月 - 1996 年 8 月,AIC 行政管理专家,怀俄明大学 ROTC,怀俄明州拉勒米 3. 1996 年 8 月 - 1998 年 6 月,学生,ROTC,中央华盛顿大学,华盛顿州埃伦斯堡 4. 1998 年 7 月 - 2002 年 6 月5. 2002 年 7 月 - 2007 年 1 月,高级工程师,诺斯罗普·格鲁曼公司 (TASC),新墨西哥州阿尔伯克基 6. 2007 年 1 月 - 2015 年 12 月,CITO 特别项目,定向能理事会,新墨西哥州科特兰空军基地 7. 2016 年 12 月 - 2020 年 1 月,IT 高级技术顾问,航天器理事会,新墨西哥州科特兰空军基地 8. 2020 年 1 月至今,企业信息部负责人,航天器理事会,新墨西哥州科特兰空军基地
在人口增长和气候变化的背景下,消费量增加和农作物产量下降威胁着粮食安全。为了减轻这些威胁,可以采用植物基因工程来创造产量和营养价值更高、能够抵抗疾病和干旱等生物和非生物胁迫的作物。尽管基因组编辑领域最近取得了进展,但大多数植物物种仍然难以进行基因工程,因为植物细胞壁坚硬,尺寸排阻严格,这对生物分子向植物细胞的有效运输提出了挑战。目前将 DNA 输送到植物中的常用方法限制了可转化植物物种的范围,导致转基因整合不受控制,因此需要对编辑植物进行监管审查,将其视为转基因生物 (GMO),这个过程漫长而昂贵。因此,开发一种无致病性、非整合性、物种独立的输送工具将极大地推动农业生物技术的发展。在本次研讨会上,我将介绍一种纳米材料平台的开发,该平台可以高效地将基因输送到模型和农业相关作物植物中,无需机械辅助,以无毒、无整合的方式;这些特性的组合是现有植物转化方法无法实现的。我将讨论如何对单壁碳纳米管进行化学修饰,以装载和递送 DNA 到植物细胞中,从而在烟草、芝麻菜、小麦和棉花等各种植物物种中表达功能性蛋白质。在成熟植物中实现了质粒 DNA 的有效递送和瞬时表达,特别是没有将转基因整合到植物基因组中,这一特性可以减轻对转基因植物的监管监督。本次研讨会还阐明了纳米粒子穿过植物细胞壁的基本原理。我将讨论纳米粒子的物理化学特性(大小、形状、纵横比和硬度)对植物细胞吸收的影响,我们利用 DNA 纳米结构的易编程性系统地研究了这些影响。重要的是,确定最大植物细胞吸收的最佳纳米材料参数可以合理设计纳米材料。这些发展展示了纳米材料在解决植物基因工程的主要瓶颈方面的独特能力,以实现可持续的粮食安全未来。
地图 1:规划区 25 地图 2:市政管辖区和房产所有权 26 地图 3:自然特征 27 地图 4:高程模型 28 地图 5:现有土地使用情况 29 地图 6:未来土地使用和街道规划 30 地图 7:公园、开放空间和绿道规划 31 地图 8:交通规划:道路 32 地图 9:交通规划:行人/自行车设施 33 地图 10:交通规划:未来交通 34 地图 11:公用设施、服务区和分阶段 35 地图 12:流域研究洪水风险 36 地图 13:麦迪逊-伯克-桑普雷里-德福雷斯特合作计划 37 地图 14:综合规划广义未来土地使用 38 地图 15:学区 39
本季度早些时候,我们宣布与法国 Pierre Fabre 建立战略合作伙伴关系。根据这一合作伙伴关系,Jubilant Biosys 的全资子公司 Jubilant Biosys Limited 的子公司新加坡 Jubilant Biosys Innovative Research Services Pte Limited(“JBIRSPL”)将收购 Jasmin(在法国成立的新公司,作为 Société par Actions Simplifiée (SAS),由 Pierre Fabre 全资拥有)的 80% 股权资本。交易完成后,Jasmin 应收购 Pierre Fabre 位于法国圣朱利安的研发中心(包括研发基地和研发活动)。这一战略合作伙伴关系将使 Jubilant Biosys 能够扩大其在欧洲生物制剂(mAbs)和抗体药物偶联物(ADC)等领域的足迹,此外,其现有服务包括来自印度的综合药物发现服务。