在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
3。脱离Bellman的完整性:通过基于模型的返回条件的监督学习[链接] Zhaoyi Zhou,Chuning Zhu,Runlong Zhou,Qiwen Cui,Abhishek Gupta,Simon S. Du ICLR 2024 2024年海报我们研究了Al Al Al Al的长度和弱点。4。强化方差学习中的尖锐方差界限:在随机和确定性环境中两全其美[link] Runlong Zhou,Zihan Zhang,Simon S. Du ICML 2023海报我们提供了一个系统的研究研究,对基于模型和模型的强化学习的方差依赖性遗憾界限,用于制作模型和模型的增强范围。 提出的基于模型的算法既适用于随机和确定性MDP。 5。 潜在马尔可夫决策过程的依赖于方差的和无水平的加固学习[链接] Runlong Zhou,Ruosong Wang,Simon S. Du ICML 2023海报我们为潜在MDPS提供了算法框架(可见上下文),从而实现了第一台无线的最小值遗憾。 我们通过使用对称技术为LMDP提供了一种新颖的LMDP遗憾下限来补充这项研究。 6。 了解在线组合优化的政策优化中的课程学习[链接] Runlong Zhou,Zelin HE,Yuandong Tian,Yi Wu,Yi Wu,Simon S. DU TMLR我们制定了典范的在线组合优化问题,作为潜在的MDP,并为LMDPS的自然政策梯度提供了融合。 我们通过相对条件数的角度显示了课程学习的有效性。 7。强化方差学习中的尖锐方差界限:在随机和确定性环境中两全其美[link] Runlong Zhou,Zihan Zhang,Simon S. Du ICML 2023海报我们提供了一个系统的研究研究,对基于模型和模型的强化学习的方差依赖性遗憾界限,用于制作模型和模型的增强范围。提出的基于模型的算法既适用于随机和确定性MDP。5。依赖于方差的和无水平的加固学习[链接] Runlong Zhou,Ruosong Wang,Simon S. Du ICML 2023海报我们为潜在MDPS提供了算法框架(可见上下文),从而实现了第一台无线的最小值遗憾。我们通过使用对称技术为LMDP提供了一种新颖的LMDP遗憾下限来补充这项研究。6。了解在线组合优化的政策优化中的课程学习[链接] Runlong Zhou,Zelin HE,Yuandong Tian,Yi Wu,Yi Wu,Simon S. DU TMLR我们制定了典范的在线组合优化问题,作为潜在的MDP,并为LMDPS的自然政策梯度提供了融合。我们通过相对条件数的角度显示了课程学习的有效性。7。Stochastic Shortest Path: Minimax, Parameter-Free and Towards Horizon-Free Regret [Link] Jean Tarbouriech*, Runlong Zhou* , Simon S. Du, Matteo Pirotta, Michal Valko, Alessandro Lazaric NeurIPS 2021 Spotlight, 3 % acceptance rate We propose an algorithm (EB-SSP) for SSP problems, which is the first to achieve minimax optimal regret while无参数。
雇主:戈纳雷周保护信托基金 I. 背景 戈纳雷周国家公园 (GNP) 是津巴布韦第二大国家公园,也是五大动物的家园。与津巴布韦的大多数国家公园一样,戈纳雷周国家公园并没有完全被围起来,因此野生动物和人类经常为了寻找资源而侵占彼此的领地。人类与野生动物相遇时发生的互动往往会给动物或人类带来损失。然而,居住在保护区附近也有其好处。戈纳雷周保护信托基金是津巴布韦公园和野生动物管理局与法兰克福动物学会之间的共同管理伙伴关系,自 2017 年以来一直管理着戈纳雷周国家公园。从信托基金成立之初,就实施了许多举措,试图确保公园周围的社区尽可能地从作为公园邻居中受益,同时成为有意义的利益相关者并为公园的保护做出贡献。这项知识、态度和看法调查将是自共同管理伙伴关系成立以来的第一次调查。调查将在 GNP 15 公里半径范围内的社区进行。目标样本预计为 Gonarezhou 国家公园附近社区的约 2,000 户家庭。
本次拟发行股份不超过 10,000.00 万股,且占发行后总股本的 比例不低于 25% ,超额配售部分不超过本次新股发行总数的 15% 。若全额行使超额配售选择权,则本次发行股票的数量 不超过 11,500.00 万股。 本次发行均为新股,不安排股东公开发售股份。
东芝已经提供了主要在日本的沸水反应堆(BWR),并开发了先进的沸水反应堆(ABWR),并提高了安全性和成本效益。利用数十年来建立的核专业知识,Keihin产品运营促成了福基岛 - 达吉核电站积累的受污染的水的处理,以及通过提供反应堆建筑调查机器人和燃油拆除设备而退役。此外,Keihin产品运营通过提供通风过滤器和大东日本地震发生后所需的通风过滤器和其他安全系统以及预防性维护技术(例如激光镀皮),有助于提高核电厂的安全性。
Blatt 是精密光谱学、量子计量学和量子信息处理领域的专家。他的研究对象是被捕获在离子阱中的原子,并用激光束对其进行操纵。这项工作基于与理论家 Ignacio Cirac 和 Peter Zoller 的合作以及他们在 20 世纪 90 年代中期提出的建议。2003 年,Blatt 的团队首次实现了 Cirac-Zoller 提出的纠缠操作;2004 年,Blatt 的工作组首次成功将一个原子的量子信息以完全受控的方式转移到另一个原子上(隐形传态)。科学杂志《自然》报道了这项实验,并将其放在封面上。两年后,Rainer Blatt 的工作组已经成功以受控方式纠缠了多达 8 个原子。第一个“量子字节”(qubyte)的创建使我们在迈向量子计算机的道路上又迈出了一步。 2011 年,该团队成功将这一记录提高到 14 个纠缠原子,自 2018 年以来,他们经常使用 20 个完全受控的离子量子比特进行工作。自 2011 年以来,Blatt 的团队朝着成功进行量子纠错迈出了重要一步,并成功地用七个物理量子比特编码了一个逻辑量子比特。从那时起,该团队还实现了一个通用量子模拟器,进行了开放系统量子模拟,并首次展示了格点规范理论的量子模拟。目前,Blatt 的团队经常使用两台量子计算机,致力于实现可扩展的量子计算和量子模拟。他还以支持年轻科学家而闻名。他的几位助手获得了著名奖项,并被任命为国外大学的教授。
丹尼尔 T. 冯汤姆先生是新墨西哥州科特兰空军基地 (AFB) 空军研究实验室、空间飞行器理事会企业信息部主管。他领导着一支由 50 多名文职和承包商员工组成的团队,支持空间飞行器和定向能理事会 1700 多名人员的信息技术需求。冯汤姆先生曾担任过空军士兵、军官、承包商,现在是空军文职人员。他职业生涯的大部分时间都奉献给了科特兰空军基地的空军研究实验室。冯汤姆先生最初担任高空气球实验 (HABE) 副项目经理,成功领导并将这项风险降低工作转变为天基激光项目。在进入公共服务部门之前,作为诺斯罗普·格鲁曼公司的高级工程师,冯汤姆先生帮助 AFRL 开发了一个一流的卫星测试设施,现在被多个机构使用,对硬件进行飞行前的严格测试。 2020 年 1 月,冯·汤姆先生被选为菲利普斯研究站点 IT 部门负责人。 教育经历 1998 年,中央华盛顿大学,行政管理学士 1998 年,阿拉巴马州麦克斯韦空军基地,航空航天基础课程 2001 年,圣达菲学院,计算机科学学士 2001 年,圣达菲学院,工商管理硕士 工作经历 1. 1992 年 8 月 - 1994 年 7 月,行政管理专家,佐治亚州穆迪空军基地 2. 1994 年 7 月 - 1996 年 8 月,AIC 行政管理专家,怀俄明大学 ROTC,怀俄明州拉勒米 3. 1996 年 8 月 - 1998 年 6 月,学生,ROTC,中央华盛顿大学,华盛顿州埃伦斯堡 4. 1998 年 7 月 - 2002 年 6 月5. 2002 年 7 月 - 2007 年 1 月,高级工程师,诺斯罗普·格鲁曼公司 (TASC),新墨西哥州阿尔伯克基 6. 2007 年 1 月 - 2015 年 12 月,CITO 特别项目,定向能理事会,新墨西哥州科特兰空军基地 7. 2016 年 12 月 - 2020 年 1 月,IT 高级技术顾问,航天器理事会,新墨西哥州科特兰空军基地 8. 2020 年 1 月至今,企业信息部负责人,航天器理事会,新墨西哥州科特兰空军基地
在人口增长和气候变化的背景下,消费量增加和农作物产量下降威胁着粮食安全。为了减轻这些威胁,可以采用植物基因工程来创造产量和营养价值更高、能够抵抗疾病和干旱等生物和非生物胁迫的作物。尽管基因组编辑领域最近取得了进展,但大多数植物物种仍然难以进行基因工程,因为植物细胞壁坚硬,尺寸排阻严格,这对生物分子向植物细胞的有效运输提出了挑战。目前将 DNA 输送到植物中的常用方法限制了可转化植物物种的范围,导致转基因整合不受控制,因此需要对编辑植物进行监管审查,将其视为转基因生物 (GMO),这个过程漫长而昂贵。因此,开发一种无致病性、非整合性、物种独立的输送工具将极大地推动农业生物技术的发展。在本次研讨会上,我将介绍一种纳米材料平台的开发,该平台可以高效地将基因输送到模型和农业相关作物植物中,无需机械辅助,以无毒、无整合的方式;这些特性的组合是现有植物转化方法无法实现的。我将讨论如何对单壁碳纳米管进行化学修饰,以装载和递送 DNA 到植物细胞中,从而在烟草、芝麻菜、小麦和棉花等各种植物物种中表达功能性蛋白质。在成熟植物中实现了质粒 DNA 的有效递送和瞬时表达,特别是没有将转基因整合到植物基因组中,这一特性可以减轻对转基因植物的监管监督。本次研讨会还阐明了纳米粒子穿过植物细胞壁的基本原理。我将讨论纳米粒子的物理化学特性(大小、形状、纵横比和硬度)对植物细胞吸收的影响,我们利用 DNA 纳米结构的易编程性系统地研究了这些影响。重要的是,确定最大植物细胞吸收的最佳纳米材料参数可以合理设计纳米材料。这些发展展示了纳米材料在解决植物基因工程的主要瓶颈方面的独特能力,以实现可持续的粮食安全未来。
