推荐采用市售商品化的DNA提取纯化试剂盒。如使用CTAB法提取DNA所需试剂如下: a) 乙二胺四乙酸二钠(Na 2 EDTA,C 10 H 14 N 2 O 8 Na 2 ·2H 2 O)。 b) 氢氧化钠(NaOH)。 c) EDTA 溶液:ρ(EDTA)=0.02 mol/L:称取5.8448 g EDTA 溶于适量超纯水中,NaOH 固体调节pH 至8.0,定容至1000 mL,121℃灭菌18 min,冷却后常温保存。 d) 三羟甲基氨基甲烷(Tris,C 4 H 11 NO 3 )。 e) 浓盐酸:ρ(HCl)=1.19 g/mL。 f) Tris-HCl 溶液:ρ(Tris-HCl)=0.1 mol/L:称取15.76 g Tris-HCl 溶于适量超纯水中,浓盐酸调pH 至8.0,定容至1000 mL,121℃灭菌18 min,冷却后常温保存。 g) 十六烷基三甲基溴化铵(CTAB)。 h) 氯化钠(NaCl)。 i) CTAB 提取液:称取4 g CTAB 和16.38 g NaCl,分别溶于适量超纯水中,加入0.02 mol/L EDTA 溶 液(5.3 c)8 mL 和0.1 mol/L Tris-HCl 溶液(5.3 f)20 mL,定容至200 mL,121℃灭菌18 min, 冷却后常温保存。 j) Tris 饱和酚(pH=8.0)。 k) 三氯甲烷(CHC l3 )。 l) 异戊醇(C 5 H1 2O )。 m) 酚氯仿:Tris 饱和酚、氯仿和异戊醇按25:24:1 体积比配制。 n) 乙酸铵(CH 3 COONH 4 )。 o) 乙酸铵溶液,ρ(CH3COONH4)=7.5 mol/L:称取5.78 g 乙酸铵溶于10 mL 超纯水中。 p) 乙酸钠(CH 3 COONa·3H 2 O)。 q) 乙酸钠溶液,ρ(CH 3 COONa)=3 mol/L:称取102.06 g 乙酸钠溶于适量超纯水中,冰醋酸调节pH 至5.2,定容至250 mL,121 ℃灭菌18 min; r) 无水乙醇(C 2 H 6 O)。 s) 冰乙酸(C 2 H 4 O 2 )。 t) 蛋白酶K:400 U/mL。 u) 超纯水:经121 ℃,0.1 MPa 灭菌30 min,无细菌无DNA 酶。
1. 将 5 ml 血液收集到含有 EDTA 的真空采血管 (Becton Dickinson) 中并混合。2. 用溶液 1 (10 mM Tris pH 7.6;10 mM KCl;10 mM MgCl2) 定容至 10 ml。3. 加入 120 μl Nonidet P40 (BDH) 以裂解细胞。颠倒几次以充分混合。4. 以 2000 rpm 的速度旋转核沉淀 10 分钟。5. 倒出上清液,不要移出沉淀。沉淀可以冷冻保存。6. 将沉淀轻轻地重新悬浮在 800 μl 溶液 2 (10 mM Tris pH 7.6;10 mM KCl;10 mM MgCl2;0.5 M NaCl;0.5% SDS;2 mM EDTA) 中。溶液 2 会裂解细胞核,所以要小心不要剪切 DNA。转移到 1.5 ml 的微量离心管中。7. 加入 400 μl 蒸馏苯酚(饱和于 1 M Tris pH 8.0)并混匀。8. 以 12000 rpm 的速度离心 1 分钟。将上层相转移到干净的微量离心管中。不要担心转移少量界面。9. 加入 200 μl 苯酚和 200 μl 氯仿:异戊醇(24:1)。颠倒混匀。10. 以 12000 rpm 的速度旋转 1 分钟。将上层相转移到干净的微量离心管中。11. 加入 700 μl 氯仿:异戊醇并按上述方法提取。12. 将上层水相转移到一个小的干净容器中。避免去除界面。加入 2 倍体积的冰冷乙醇并混合以沉淀 DNA*。 13. 使用密封的吸液管尖端将 DNA 纤维转移到含有 1 ml 70% 乙醇的微量离心管中。充分混合以清洗 DNA。14. 全速旋转 5 分钟。倒掉乙醇并在真空吸尘器中干燥沉淀物。在 65°C 的无菌水中重新悬浮 DNA。不要过度干燥基因组 DNA,否则将很难重新悬浮。
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮以亚硝酸根离子的形式固定在碱性亚砷酸钠或三乙醇胺吸收剂溶液中。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (CI 50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度会降低,然后脱氨。加入溴离子可提高重氮化速度,反应几乎瞬间完成。在 0 – 20 µg 亚硝酸盐范围内符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1。颜色系统可稳定 2 天。在碱性条件下,异戊醇中可提取染料,加入甲醇硫酸可恢复染料颜色。其摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮在碱性亚砷酸钠或三乙醇胺吸收剂溶液中以亚硝酸根离子的形式固定。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (C.I.50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度降低,随后脱氨。添加溴离子可提高重氮化速率,反应几乎立即完成。亚硝酸盐浓度为 0 – 20 µg 时,符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1 。显色体系可稳定 2 天。染料可在碱性条件下用异戊醇提取,加入甲醇硫酸可恢复染料颜色。摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
摘要。开发了一种简单灵敏的分光光度法,用于测定空气中的二氧化氮和水、土壤、一些分析级化学品和牙膏中的亚硝酸盐。空气中的二氧化氮以亚硝酸根离子的形式固定在碱性亚砷酸钠或三乙醇胺吸收剂溶液中。该方法基于水介质中的亚硝酸盐与已知过量的中性红 (CI 50040) 的反应,中性红是一种具有伯氨基的吖嗪染料,最大吸收波长为 530 nm。在酸性介质中,由于重氮化,颜色强度会降低,然后脱氨。加入溴离子可提高重氮化速度,反应几乎瞬间完成。在 0 – 20 µg 亚硝酸盐范围内符合比尔定律,摩尔吸光度为 2.5 × 10 4 L mol –1 cm –1。颜色系统可稳定 2 天。在碱性条件下,异戊醇中可提取染料,加入甲醇硫酸可恢复染料颜色。其摩尔吸光度为 4.3 × 10 4 L mol –1 cm –1 。亚硝酸盐浓度为 0 – 1.6 µg 时,符合比尔定律,检测限为 0.15 µg。
摘要 在调查中,对受害者和肇事者进行法医身份识别至关重要,特别是在尸体被烧毁、腐烂或严重受损的案件中。牙齿通常被用作 DNA 分析的来源,因为与骨头相比,牙齿更能抵抗环境影响。本研究旨在评估温度和燃烧时间对用于性别鉴定的牙齿 DNA 质量的影响。25 颗牙齿样本在 500°C、750°C 和 1000°C 的温度下燃烧 10 分钟和 15 分钟。通过苯酚-氯仿-异戊醇法进行 DNA 提取,并使用紫外可见分光光度法进行测量。使用牙釉质蛋白基因通过 PCR 进行 DNA 扩增,并使用丙烯酰胺凝胶电泳进行可视化。本研究的结果表明,DNA 浓度随燃烧温度的升高而增加。然而,DNA 的质量在高于 500°C 的温度下会下降。牙齿被证实可承受 500°C 的高温燃烧 10 分钟,可用作性别鉴定的来源,但在 750°C 和 1000°C 的高温下容易降解。这项研究通过强调牙齿对高温的抵抗力,帮助执法人员对火灾受害者进行法医鉴定。
目前,聚合物基湿度传感器面临诸多限制,包括合成能耗高、灵敏度低和响应时间慢。本研究提出了一种创新方法来克服这些挑战,该方法基于一种强大的全水基原位微乳液聚合。整个过程中使用水可减轻对环境的负面影响。选择用浓度范围为 0.2-1.0 wt% 的还原氧化石墨烯 (rGO) 增强的硫醇烯聚合物来制造这些化学电阻传感器。所选硫醇烯具有高疏水性和半结晶性质,表明即使长时间暴露在潮湿环境中也能抵抗早期分层。加入 rGO 不仅可以赋予复合膜导电性,还可以增强复合膜的机械和防水性。0.6% rGO 复合材料表现出最佳的湿度传感电阻,在三个暴露周期中对 800-5000 ppm 的水蒸气浓度表现出快速而一致的响应。此外,该传感器对水蒸气的选择性优于甲苯、丙醇和 4-甲基-2-戊醇,这归因于水性薄膜的高表面亲水性和固有孔隙率,以及基质内 rGO 薄片的网络结构。总之,这项研究开创了一种基于聚合物的湿度传感新方法,解决了关键限制,同时提供了更高的灵敏度、快速的响应时间和卓越的选择性。
摘要:本研究研究了两株粟酒裂殖酵母菌株(NCAIM Y01474 T 和 SBPS)和两株日本裂殖酵母菌株(DBVPG 6274 T、M23B)发酵苹果汁的能力,并与酿酒酵母 EC1118 进行了比较,以了解它们对苹果酒挥发性化合物的影响。裂殖酵母的乙醇耐受性和脱酸能力使其成为常用酿酒酵母发酵剂的潜在替代品。尽管时间过程不同(10-30 天),但所有菌株均可完成发酵过程,裂殖酵母菌株降低了苹果汁中的苹果酸浓度。结果表明,每种酵母对苹果酒的挥发性成分都有不同的影响,使用主成分分析可以分离最终产品。苹果酒的挥发性成分在醇、酯和脂肪酸的浓度方面表现出显著差异。具体来说,絮凝剂菌株 S. japonicus M23B 增加了乙酸乙酯(315.44 ± 73.07 mg/L)、乙酸异戊酯(5.99 ± 0.13 mg/L)和异戊醇(24.77 ± 15.19 mg/L)的含量,而 DBVPG 6274 T 使苯乙醇和甲硫醇的含量分别增加到 6.19 ± 0.51 mg/L 和 3.72 ± 0.71 mg/L。在 S. cerevisiae EC1118 发酵的苹果酒中检测到大量萜烯和乙酯(例如辛酸乙酯)的产生。这项研究首次证明了 S. japonicus 在苹果酒酿造中的应用可能性,可以为产品提供独特的芳香味”。
葡萄酒微生物群落建立了复杂的生态系统,调节香气化合物的形成,但只有少数研究寻求特定微生物与葡萄酒挥发性物质之间的相关性。本研究结合了代谢条形码和代谢组学,以识别与杜罗河标志性地区 3 个著名品种的葡萄酒挥发性特征相关的真菌和细菌微生物生态位。在整个自然发酵过程中,鉴定了三个主要的微生物生态位,并且 Hanseniaspora - Saccharomyces 的演替时间取决于品种。最大的生态位包括 Hansenias pora、Aureobasidium、Alternaria、Rhodotorula、Sporobolomyces、Massilia、Bacillus、Staphylococcus 和 Cutibacterium,它们与 7 种代谢物呈正相关,即乙偶姻、乙酸异戊酯、丙酸乙酯、c-3-己烯醇、苯乙醚和 4-乙基苯酚。发酵酵母S. cerevisiae、Torulaspora delbrueckii和Meyerozyma caribbica与γ-丁内酯、t-威士忌内酯、异戊醇、癸酸乙酯、异丁酸乙酯、琥珀酸二乙酯、异戊酸、4-乙基愈创木酚和4-丙基愈创木酚呈强相关性。 Lachancea quebecensis 与几种致病真菌(青霉菌、白粉病菌、核盘菌、曲霉菌、Mycosphaerella tassiana)和细菌(假单胞菌属、酸拟杆菌、泛菌、Steno trophomonas 和 Enhydrobacter)聚类,与各种单萜醇和降异戊二烯类化合物(包括芳樟醇和 β-紫罗兰酮)呈正相关,此外还与苯甲醇、二乙酰、乙酸异丁酯、乙基香草酸酯和甲基香草酸酯呈正相关。代谢物-微生物群相关性表明品种特异性可能是区域芳香特征的基础。
RTTUZYUW RHOIAAA0001 0672035-UUUU--RHSSSUU。 ZNR UUUUU R 072031Z 3 月 24 日 ZYB MID7384820U FM COMNAVPERSCOM MILLINGTON TN 致 ALNAVAIRFOR BT UNCLAS CUI MSGID/GENADMIN/MIL-STD-6040(SERIES)/B.1.01.15 /COMNAVPERSCOM MILLINGTON TN/-/-/-/-/-/-// SUBJ/2024 年 6 月海军飞行军官 (NFO) 致飞行员委员会// REF/A/MSGID/MILPERSMAN 1542-010/-/-/-// REF/B/MSGID/NAVMED P-117/ 第 15 章第 1565 条/-// POC/WHITWORTH,PARKER A/LCDR/UNIT:NPC/NAME:PERS-433C/TEL:901-874-3960// GENTEXT/REMARKS/ 1. NFO 至飞行员计划选拔委员会定于 2024 年 6 月 13 日举行。 2. 背景:NFO 至飞行员计划是海军航空兵的招募和留用计划。该计划面向所有社区的 NFOS。为确保入选者的职业发展,资格仅限于 19 岁以下和初级的 NFOS。所有申请人必须满足参考文献 A 和 B 中的要求。为了促进职业时机/进步,单位指挥官应期望选定的人员立即出发进行初级飞行训练。每年 6 月和 12 月都会向飞行员委员会进行 NFO 培训。3. 考虑要求列于参考文献 A 和 B 中。4. 申请:A. 格式:<<<<<>>>>> B. 航空选拔测试 (ASTB):最低 ASTB 学术资格评分 (AQR) 为 4。最低飞行员飞行能力评分 (PFAR) 为 5。ASTB 分数是 TRACOM 中经过验证的预测绩效指标,鼓励申请人重新参加测试以提高分数。C. 体检:申请人必须通过 AERO 系统完成学生海军飞行员飞行体检。这包括 DOD 2808、2807、SF507、AHLTA SNA 眼科检查/睫状肌麻痹屈光记录和心电图。必须在 20' 眼科通道上使用 GOODLITE 字母检查视力,必须使用环戊醇滴剂进行睫状肌麻痹。检查飞行外科医生必须将所有医疗文件提交/上传到航空医学电子资源办公室 (AERO) 网站,并向 BRIAN HASHEY 发送通知电子邮件