稳态视觉诱发电位 (SSVEP) 是一种与周期性视觉刺激频率锁定的大脑活动( Zander 等人,2009 年)。与其他模式(例如运动想象 (Nicolas-Alonso and Gomez-Gil, 2012))相比,SSVEP 具有相对较高的准确度和信息传输率,并且对用户所需的培训最少,因此被广泛应用于脑机接口 (BCI) 中。标准的基于 SSVEP 的 BCI 在工作空间中包含多个刺激,每个刺激以不同的频率闪烁,而脑电图 (EEG) 主要从枕叶测量。测得的 EEG 反映了用户视觉上关注的刺激的频率,以及该频率的谐波。谐波的存在为解码过程提供了更多的参考点,但也给基于 SSVEP 的 BCI 的设计带来了额外的复杂性和挑战。例如,如果同一个 BCI 中对两个不同的刺激同时使用某个频率及其谐波,那么在记录的这两个刺激的脑电图中就会有共同的频率,这可能会混淆解码算法。因此,在文献中,一些研究有意避免在刺激中使用具有共同谐波的频率(Volosyak 等,2009;Chen 等,2015)。这个谐波问题,加上人脑对周期性视觉刺激的响应频率范围有限(Regan,1989),限制了标准基于 SSVEP 的 BCI 中可使用的唯一频率的数量;即,低信噪比脑电图记录和小的频率分离会损害解码性能。因此,在需要大量唯一频率来标记所有目标的场景中使用标准基于 SSVEP 的 BCI 具有挑战性。为了解决这个问题,已经引入了多频刺激方法,在每个刺激中使用多个频率,其中两个频率(双频)是最广泛使用的模态(Shyu 等,2010;Zhang 等,2012;Chen 等,2013;Hwang 等,2013;Kimura 等,2013;Chang 等,2014;Mu 等,2021a)。然而,这些研究主要集中于介绍多频刺激方法,并没有探讨频率选择方法。随着用于标记每个目标的频率数量的增加,在每个刺激或目标上使用多个频率可以成倍增加可以在工作空间中表示的目标数量。多频刺激产生复杂的周期性刺激信号,从而触发更复杂的 SSVEP 反应。在 Mu 等人的研究中, (2021a)表明,多频率 SSVEP 响应不仅包含输入频率及其谐波,还包含输入频率的整数线性组合,这些组合具有在记录的 SSVEP 中更可能观察到的低阶相互作用。注意,相互作用的顺序定义为
人类出局(Hootl)/自主(AITL)自主机器人代理商(ARAS)正在我们社会中占用其必不可少的位置,以实现各种任务。由于前进的网络物理系统(CPSS)和AI技术,这种趋势有望成倍增加。各种复杂的任务范围(例如搜救(SAR),以及可以将多个自动无人驾驶飞机(A-UAVS)重重负载分配给ARA群或ARA可以在社交环境中随机遇到以执行预先确定的常见任务(例如,在地面自动驾驶汽车(AVS)的交叉路口避免碰撞。建立“联合认知”必须安全,最佳地完成操作。“联合认知”通过尊重预定义的规则执行共同分配/确定/共享任务时,是)获得环境的数字双胞胎(DTS)的智能(即其他代理商和环境动态的状态和状况意识(SSA)先前执行的组中所有代理人都执行了有关感兴趣区域(ROI),这些代理人的能力,这些迫切和即将到来的驱动的能力,ii)的智能分配和iii的特定范围,并在整体上贡献了稳定的稳定性,并在其迫在眉睫的过程中进行促成的整体效果,并且安全,最佳地实现最终协作群目标的方法。在这篇论文中,本演讲为建立远程ARA群的“联合认知”以支持群体表现的方法学框架。“共同认知”并不能优先考虑自我利益,而是放弃了短期个人奖励,以获得累积的较大的关节奖励(例如,不导致其他AV碰撞,而避免碰撞本身的同时造成碰撞本身),以促进多个目标(例如,所有Ara Ara swarms of the Awharm ewarms of exharm sharms swarms of the Asha ewarms swarms sepsions)的造成。ARA应以一种对社会负责的方式行事,并且可能需要以人为和机器智能结合人类和机器的智能来协调和远程触觉,以协调和远程注视以根据需要的人类机器人团队来完成任务。The proposed framework, which aims to increase trust in the self-determined behaviours of ARAs in meeting the joint swarm goals and expectations of societal stakeholders, has demonstrated the crucial phases of both understanding the behaviours of other agents and building “joint cognition” for remote ARA swarms to make them co-work effectively and efficiently in collaborative decision-making considering social dynamics, leading to socially responsible cyber-physical社会系统(CPSSS)。
最高统帅指出,现代和新一代装备的供应量成倍增加,形成了先进的科学技术储备,开发和掌握了发展具有竞争力的生产的关键技术军品作为俄军队发展中极具前景的领域。与此同时,重新武装军队的重点是俄罗斯国防工业综合体和科学基础(普京,2012 年)。包括军事领域在内的科学活动组织的社会性是毋庸置疑的,因此,军事科学的组织原则和军事科学家的社会地位正在成为现代军事技术发展的重要因素和科学研究。在学科方法框架内,军事科学被视为关于战争的战略性质和模式、武装部队和国家战争的建设和准备以及发动武装冲突的方法的知识体系。军事科学的传统组成部分是:战争理论;军事艺术理论——战略、战役艺术和战术;军事发展理论;军队管理理论;武装力量类型理论;民防理论;军事经济与后方理论;军事训练与教育理论、军事史。武器和军事装备发展理论占据着特殊的、在某些情况下是可以预见的地位(军事……,2004)。军事科学作为一门社会制度,是在军事主题框架内从事科学知识生产的社会主体的社会角色、关系和行为刻板印象的体系。军事科学社会研究所的主体可以是在国防部部门科研机构和大学以及其他涉及军事安全问题的科研组织中开展科研活动的科学家个人、科研团队和科研团体。俄罗斯军事科学的制度化始于18世纪末至19世纪初。俄罗斯军事科学机构出现的先决条件是随着1763年俄罗斯军队总参谋部的成立而出现的,该军事机构能够对国家武装力量实施统一、集中的指挥。在他的领导下,第一批军事图书馆和档案馆出现了。它们包含历史文献——战役进程的描述、计划以及带有部队部署的地图。根据这些材料,制定了用于训练部队在战场上行动的指令和文章。1812年,在我国军事史上第一次在陆军部下属成立了军事科学委员会(VUK)。它包括六个常任理事国,以及来自俄罗斯和其他国家的荣誉会员和通讯会员(军事科学......,2013 年)。后来,组织科学活动的职能由其他机构承担,并在 19 世纪末,出现了第一个军事科学家公共协会——军事知识倡导者协会,该协会开展研究和教育功能。目前,国防部军事科学的领导机构是俄罗斯联邦武装力量军事科学委员会(以下简称MSC),成立于1999年。VNK 包括国防部研究机构和高等研究单位
摘要 在过去的 10-20 年里,集成电路 (IC) 的发展发生了重大转变,传统的光刻方法在更先进节点的开发时间急剧增加,而要实现与以前相同的性能提升,成本也成倍增加。成本的增加和光刻技术的进步导致人们开始研究先进的封装技术,通过改变 IC 设计方法来实现相同的性能提升。未来先进封装技术将以更低的成本提高性能,人们将 IC 视为一个相互交织工作的组件系统,而不是单个组件。这种思维转变导致了系统级封装 (SiP)、堆叠封装 (PoP) 和扇出型晶圆级封装 (FOWLP) 等技术的出现。在实现上述技术方面发挥关键作用的一项先进封装技术是临时键合和脱键合 (TB/DB)。 TB/DB 在先进封装中发挥的关键作用在于,通过使用支撑载体晶圆,可以实现晶圆减薄、晶圆凸块、芯片堆叠和化学气相沉积/物理气相沉积 (CVD/PVD) 型工艺等背面处理。支撑载体晶圆还可以减少整个晶圆堆叠的整体翘曲,从而允许使用易翘曲的材料,例如环氧模塑料 (EMC),这在 FOWLP 应用中至关重要。要使用支撑载体晶圆,需要一种坚固的材料解决方案,以便将晶圆粘合在一起,然后在背面处理后通过热滑动、机械或激光脱粘等主要分离方法之一将其释放。Brewer Science 设计并开发了一种双层临时粘合系统。该系统由两种材料组成,一种是通常涂在设备上的热塑性层,另一种是通常涂在载体上的热固性层。为双层系统开发的材料在极高温度应用、EMC 晶圆处理和设备减薄至 20 µm 以下方面表现出色。在本文中,我们将总结它们的功能,并介绍如何通过材料设计来调整两个临时层之间的粘合力。我们还将介绍热固性层的一个新功能,该功能可以进行图案化,从而允许将图案化粘合材料用于 TB/DB 型应用。关键词临时晶圆粘合、双层系统、光图案化、热塑性材料和热固性材料
Yoshua Bengio 正如《国际先进人工智能安全科学报告》所强调的那样,通用人工智能系统的能力在过去十年中一直在稳步提升,并在过去几年中显著加速。1 如果这些趋势持续下去,并且按照领先人工智能公司宣称的目标,我们很可能在广泛的认知技能领域实现人类水平的能力,即通常所说的通用人工智能 (AGI)。值得注意的是,我们已经在自然语言方面实现了人类水平的能力,即可以阅读和理解文本并流利地响应或生成新的文本、视觉、音频或视频内容的系统。虽然科学进步无法准确预测,但许多领先的研究人员现在估计 AGI 的时间可能短至几年或十年。这与过去十年的稳步发展相一致,这些发展是由算法进步和计算资源使用量的扩大以及全球人工智能研发投资呈指数级增长(高达数万亿美元)所推动的。2 虽然缺乏内部审议能力(即思考能力)一直被认为是当前人工智能的主要弱点之一,但最近基于一种具有内部审议能力的新型人工智能的进展表明,我们可能即将缩小与人类水平推理能力的差距。3、4 此外,前沿人工智能公司正在寻求开发具有特定技能的人工智能,这种技能很可能解锁所有其他技能并加速进步:具有推动人工智能研究能力的人工智能。一个人工智能系统如果在人工智能研究方面的能力与人工智能实验室中最顶尖的少数研究人员一样强,那么高级研究人员的数量将成倍增加。尽管训练人工智能需要数万个 GPU,但一旦训练完成,就可以在推理时并行部署,产生相当于数十万个自动化人工智能工作者。这样的扩展可以大大加速超人人工智能系统的发展。这一场景的实现可能导致从 AGI 到人工智能超级智能 (ASI) 的快速转变,据一些专家称,转变时间从几个月到几年不等。5 想象这样的可能性可能具有挑战性,我们无法保证它们会实现,因为未来人工智能发展的速度和方向在很大程度上取决于未来数月和数年的政治决策和科学进步。如果 ASI 出现,会有什么后果?6然而,考虑到专家们列出的某些情景的后果,我们现在需要认真考虑如何减轻这些后果。显然,潜在的好处是巨大的,可以通过医学、教育、农业、应对气候变化等方面的进步,实现显著的经济增长和社会福祉的极大改善。然而,这种高级智能也可能在全球范围内提供无与伦比的战略优势,并使平衡偏向少数人(公司、国家或个人),同时对许多其他人造成巨大伤害。在当前的地缘政治和企业背景下尤其如此,因为对这些技术的控制极其集中。
尽管由于强有力的疫苗研发、严格的审查和批准、严谨的指导方针和政策、监测和监控以及成功的分发和疫苗接种平台,美国儿童在传染病的预防方面获得了相当程度的安全,但疫苗接种方面仍然存在 4 个问题。疫苗接种不足可以用 5 个因素来解释:可及性、可负担性、认知、接受和激活。5 虽然可及性和可负担性仍然是一个问题,特别是对于历史上被边缘化的社区,但最后 3 个因素——认知、接受和激活——也是主要障碍。全球已在疫苗研发上花费了数十亿美元,6 但在更好地理解和解决疫苗接受度不足(即疫苗犹豫)方面的投资却少得多。7 这尤其令人担忧,因为我们正处于反疫苗错误和虚假信息的黄金时代,1,8 在社交媒体的推动下,这类内容迅速传播。 9 即使人类能明辨是非,改变行为仍十分困难 10 ;当看护者由于社交媒体上不断接触反疫苗内容而不敢给孩子接种疫苗时,改变行为的难度会成倍增加。有必要澄清一些术语:反疫苗者指完全反对一种或多种疫苗的人;对疫苗犹豫者指对疫苗持怀疑或担忧并真诚提出疑问的一类人。由于接触了如此多的疫苗错误信息和虚假信息,许多看护者会对疫苗产生担忧,这是可以理解的。反疫苗策略非常复杂且细致入微,社交媒体允许狭隘地定位信息,旨在根据个人的信仰、价值观和处境制造恐惧。 11 2020 年的一项研究使用社交网络分析来研究近 1 亿在 Facebook 上表达疫苗观点的人如何相互交流,结果发现,那些支持反疫苗观点的人与那些表达疫苗犹豫的人有很好的联系,而那些支持疫苗观点的人大多只与那些表达疫苗犹豫的人有联系。换句话说,在 Facebook 上发布疫苗支持内容的人大多与志同道合的人互动,而发布反疫苗内容的人往往会接触那些表达犹豫的人。他们实现这一点的部分方法是,通过与安全、阴谋和替代医学相关的叙述,针对特定受众定制信息。12 这项研究还发现,相比之下,疫苗支持叙述相对统一,不能很好地针对不同的疫苗相关问题进行调整。12 这些发现解释了反疫苗错误信息和虚假信息如何能够在社交媒体上如此迅速地传播,并对疫苗犹豫者产生如此强大的影响。重要的是要让那些对疫苗犹豫不决的人保持尊重和关注,积极倾听、同理心和基于证据的答案。虽然与犹豫不决的护理人员面对面交流很重要,但与他们进行虚拟交流也是必不可少的。社交媒体平台价格低廉、易于掌握,并且每天能够接触到数万(或数十万)人,比在办公室里看到的人数还要多。
欧盟对非洲能源转型有着双重利益。它希望看到非洲跨越碳驱动的发展轨迹,但它也希望将其可再生能源技术推向海外。非洲国家和领导人对利用全球清洁能源革命的势头来推动非洲大陆的工业化和发展议程有着浓厚的兴趣。然而,欧盟并不是唯一投资非洲可再生能源潜力的参与者。美国和中国的技术驱动转型,加剧了人们对非洲可再生能源市场竞争的认识。欧盟全球门户等举措被明确提出作为中国对外基础设施融资的替代方案。本文探讨了欧盟不断发展的外交政策议程中的这种“地缘政治竞争”叙事,重点关注欧洲和中国在非洲的(可再生)能源投资。它着眼于非洲清洁能源的短期和长期趋势、欧洲和中国参与的商业模式,并解决了一些关于(中国)在非洲基础设施投资的长期误解和误解。它为欧盟参与非洲可再生能源提供了现实检验,并提出了加强欧盟与非洲可再生能源合作的建议。 竞争模式还是平行世界 欧洲政策圈的主流观点表明,非洲绿色基础设施领域即将展开一场争夺机遇的竞赛。事实上,欧洲和中国长期以来一直在非洲能源基础设施领域使用完全不同的商业模式,在许多国家,它们更多的是并行工作,而不是直接竞争。 欧洲在非洲可再生能源领域的足迹基于发展目标,以及利用公共资金吸引私人融资和资本。一方面,它侧重于从独立电力生产商进行竞争性公开采购,另一方面侧重于分散式(离网和微电网)解决方案。 然而,自《欧洲绿色协议》以来,欧盟对海外可再生能源的态度越来越多地受到更积极主动的利益的引导,这种利益的驱动力是欧洲技术未来市场机会的预期、向更加互联的欧洲能源系统的转变,以及对绿色转型关键原材料的日益增长的追求。 2013 年至 2018 年期间,中国对非洲能源基础设施的投资成倍增加,主要集中在主权债务融资的大型化石燃料、水电和互联互通基础设施建设项目上。然而,自新冠疫情爆发以来,中国对非洲基础设施的承诺急剧下降。由于债务压力加剧,中国基础设施融资也不太可能反弹至 2010 年代的水平或状态。与此同时,中国海外投资、欧盟及其国有建筑和能源公司正在适应更加绿色的全球环境。中国迅速取消对海外煤炭的支持,但可再生能源投资将保持下去,而且更有可能扩大。2021年和2022年,中国还将采取新的重要措施,推动海外投资绿色化,将中国和国际标准应用于中国对外投资和建设项目,为更加绿色的“一带一路”铺平道路。现实检验过去几年,地缘政治竞争的概念渗透到了欧盟对外行动的所有领域,海外基础设施和能源外交尤其如此。从非洲的可再生能源来看,主流言论似乎表明,直接竞争的程度比目前更高。我们观察到,外部基础设施融资的需求远远超出了任何外国合作伙伴的报价,而不是大国之间的战场。从现在到2030年,我们将看到海外可再生能源利益迅速扩大的阶段,这主要是由欧洲、中国和非洲的国内动态和与能源转型相关的经济利益驱动的。
标题:将神经元群体格式与功能联系起来作者:Douglas A. Ruff 1、Sol K. Markman 1,2、Jason Z. Kim 3、Marlene R. Cohen 1 1 美国伊利诺伊州芝加哥大学神经生物学系 2 美国马萨诸塞州麻省理工学院脑与认知科学系 3 美国纽约州伊萨卡康奈尔大学物理系摘要 具有复杂行为的动物往往比简单生物具有更多不同的大脑区域,而执行多项任务的人工网络往往会自组织成模块 (1-3)。这表明不同的大脑区域发挥着不同的功能来支持复杂的行为。然而,一个常见的观察是,动物感觉、知道或做的任何事情基本上都可以从任何大脑区域的神经活动中解码 (4-6)。如果万物无处不在,为什么还要有不同的区域?这里我们表明,大脑区域的功能更多地与不同类型的信息在神经表征中如何组合(格式化)有关,而不仅仅与这些信息是否存在有关。我们比较了两个大脑区域:中颞区(MT),对视觉运动感知很重要(7,8),以及背外侧前额叶皮质(dlPFC),与决策和奖励预期有关(9,10))。当猴子根据运动和奖励信息的组合做出决策时,这两种类型的信息都会出现在两个大脑区域中。然而,它们的格式不同:在 MT 中,它们是单独编码的,而在 dlPFC 中,它们以反映猴子决策的方式联合表示。一个反映了 MT 和 dlPFC 中信息格式的循环神经网络(RNN)模型预测,操纵这些区域的活动将对决策产生不同的影响。与模型预测一致,电刺激 MT 偏向于视觉运动刺激和受刺激单元的首选方向之间的中间位置的选择(11),而刺激 dlPFC 则产生“赢家通吃”决策,有时反映视觉运动刺激,有时反映受刺激单元的偏好,但绝不会介于两者之间。这些结果与模块化结构通过灵活地重新格式化信息来实现行为目标,从而实现复杂行为的诱人可能性相一致。神经群体反应中不同信息源的格式化在单个神经元中并不明显。长期以来,人们都知道单个神经元的反应反映了多种感觉、认知和/或运动过程。例如,MT 神经元针对视觉运动方向进行调整(7、8、12-14),其反应受到奖励信息(例如与刺激或选择相关的预期奖励)和其他认知过程的调节(通常成倍增加)(15-18)。然而,从单个神经元研究中收集到的已知的调整和调制模式与群体中关于运动方向和奖励信息的多种格式化方式相一致(有时称为表征几何或神经群体几何(19, 20))。之所以出现不同的可能性,是因为即使是相同调整的神经元,也会受到认知过程的异质性调制。通过在对运动方向具有相同调整的神经元中增加一些奖励预期调制量的随机性来模拟这种异质性(图 1A;方法)可以产生运动方向和奖励预期的群体表示,这些表示要么是可分离的(在每个神经元的响应为一维的空间中以不同维度编码;图 1B、C、D),要么是组合的(以相同维度编码;图 1E、F、G)。可分离和组合群体格式之间的差异无法从单个神经元响应中得知,而是来自于奖励预期的调制如何以及是否在整个群体中协调。
量子计算是计算机技术的一个分支,它使用量子理论的原理来处理信息。与传统的二进制计算机不同,后者使用的比特只能是 1 或 0,而量子计算机使用的量子比特可以同时存在于多个状态。这种称为叠加的特性允许进行更复杂的计算,并成倍增加处理能力。云计算是一种通过互联网提供数据存储、服务器、网络和数据库等服务的模型。量子云计算结合了这两种技术,使人们无需拥有一台量子计算机就可以访问强大的量子计算机。IBM 是目前唯一一家提供云量子计算设施的公司,提供免费使用的 5 量子比特机器。云计算和量子计算之间的关系是协同作用。用户无需拥有量子计算机,就可以利用基于云的量子处理来完成复杂的任务,例如解码化合物、优化供应链和管理财务风险。此外,云量子计算通过处理更复杂的数字来实现更安全的加密方法。云量子计算的应用包括教育,它可以用来向学生传授量子计算概念。借助云量子计算机,量子物理教育将变得更加容易。学生无需物理设备即可学习和进行实验。该领域具有巨大的发展潜力,研究人员可以利用云量子计算机来测试理论和开展研究。马丁·雷诺兹 (Martin Reynolds) 表示,由于特定的房间条件和需要新的编程技能,实施基于云的量子计算具有挑战性。IT 团队必须开发专业知识来微调算法和硬件。尽管面临挑战,但云提供商将成为首批提供量子即服务的提供商之一,为开发人员提供访问量子处理的方法。如果实际问题能够得到解决,量子云计算可能会产生与人工智能类似的深远影响。量子力学支持开发创新应用程序,包括量子算法的实施和测试。研究人员可以利用基于云的资源进行实验、测试理论和比较架构。此外,基于云的平台有助于创建向人们介绍量子概念的游戏。在数字化转型领域,可以使用基于云的量子资源处理和预测数 TB 的大数据。 qBraid Lab、Quandela Cloud、Xanadu Quantum Cloud、Rigetti Computing 的 Forest、Microsoft 的 LIQUi| 和 IBM Q Experience 等基于云的平台提供对各种量子设备和模拟器的访问。这些平台提供编程语言、开发框架和示例算法的工具。一些值得注意的基于云的量子资源包括:* qBraid Lab:一个提供软件工具和访问 IBM、Amazon Braket、Xanadu、OQC、QuEra、Rigetti 和 IonQ 量子硬件的平台。 * Quandela Cloud:第一台可通过 Perceval 脚本语言访问的欧洲光子量子计算机。 * Xanadu Quantum Cloud:一个基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:一个用于量子计算的工具套件,具有编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:一个用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个 transmon 量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q 网络提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两款硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特传输处理器)和 QX(荷兰国家超级计算机 Cartesius 上的量子模拟器后端,最多可模拟 31 个量子比特)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的协作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。欧洲首款可通过 Perceval 脚本语言访问的光子量子计算机。 * Xanadu Quantum Cloud:基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:量子计算工具套件,包含编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:量子计算软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:通过基于 Python 的 Qiskit 框架或图形界面提供量子硬件和 HPC 模拟器访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两个硬件芯片提供基于云的量子计算的平台。 Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。欧洲首款可通过 Perceval 脚本语言访问的光子量子计算机。 * Xanadu Quantum Cloud:基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:量子计算工具套件,包含编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:量子计算软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:通过基于 Python 的 Qiskit 框架或图形界面提供量子硬件和 HPC 模拟器访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两个硬件芯片提供基于云的量子计算的平台。 Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。和示例算法。 * 微软的 LIQUi|:一种用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。Qutech 是欧洲第一个为两个硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,它们托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的合作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。和示例算法。 * 微软的 LIQUi|:一种用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。Qutech 是欧洲第一个为两个硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,它们托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的合作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。这些平台为用户提供了一系列工具和资源,用于探索和开发量子算法和应用。文章还提到了几篇与基于云的量子计算相关的研究论文和出版物,凸显了人们对该领域日益增长的兴趣。这些平台为用户提供了一系列工具和资源,用于探索和开发量子算法和应用。文章还提到了几篇与基于云的量子计算相关的研究论文和出版物,凸显了人们对该领域日益增长的兴趣。
图像颜色不可用:要观看此视频,请下载 Flash Player 2015 年 10 月 29 日标记此内容引文页面自上次战争以来的三十年里,一位著名人物主宰着阿拉斯的生活。Guy Mollet 多次连任市长和副市长,是一位全国知名人物。他曾在戴高乐将军手下担任部长。在他的影响下,阿拉斯成为一个现代而活跃的城镇... 书店描述 仅在网上销售。访问卖家主页 会员协会 这些协会的成员承诺保持卓越的质量标准。他们保证所有待售物品的真实性。他们提供专业和详细的描述,指出重大缺陷,提供明确的价格,并在整个商业关系中展示公平和诚实。 植物分销中心 ZI de LAUBARDEMONT,SABLONS,33910,法国 销售条件:所有货物每天通过邮寄或跟踪快递发货。作品在收到付款后发货,接受信用卡。交货条件:无论选择何种运输方式,订单通常会在一个工作日内发货,并使用跟踪系统进行全球配送(推荐至少一种)。运费是固定的,并在订购时显示。如果订购的书籍特别重或笨重,您将被告知需要额外的运费。此致,迪迪埃·罗德里格斯摘自第四个封面在 5 世纪末野蛮人入侵后,位于现今阿拉斯领土一部分的罗马城市只剩下一片废墟。圣瓦斯特于 500 年左右到达,重建了大教堂,很快这座城市就从灰烬中崛起,围绕着西岱圣母院。1434 年的冬天给居民留下了深刻的回忆。从 11 月下旬到 3 月底,大地没有解冻。作者写道:“人们会穿上羊毛内衣,把脚放在壁炉上,但仍然不会暖和起来。雪人在街上成倍增加,一些居民对寒冷的材料有着病态的天赋:因此,在 Louez-Dieu 街,讲台脚下有一个‘敲钟人’,随着他的音乐,人类的所有条件、伟大、权力、科学、青春和死亡都会将他们推向坟墓。人们起了鸡皮疙瘩,而好父亲只需要完成我们的转变。” Coclipas 街 (Coppelilepas) 让人想起“割喉”的做法,让人想起“truandaille”,它冲向裹着外套的衣冠楚楚的资产阶级,让他被气枪的猛烈射击杀死……歌舞表演上方的标语不难让散步者重新回到这个地方的氛围中:“别再往前走了。” 1754 年 5 月 21 日,查尔斯·路易·亚历山大 (Charles-Louis-Alexandre),博福特侯爵和蒙迪库尔侯爵,在下城获得一块地皮,并建造了一座美丽的酒店。二十年后,这片庄园... © Micberth **书籍详情** * 书名:未指定 * 出版商:Laffitte Reprints, 1976 * 尺寸:22.5 x 15.5 厘米 * 页数:526 和 694(两卷) * 装订:原出版商装订,状况良好 * 版本:限量 300 册 * 参考编号:6643 * 价格:80.00 欧元 **书店信息** * 名称:Librairie L'AbacM. Gilles Wolles * 地址:176-176A rue Blaes, 1000 Bruxelles, Belgium * 电话:+3225025322 * 电子邮件:oldbooks@labac.be **付款和运输条款** * 付款方式:[未提及具体付款方式] * 销售条件:书籍完整且状况良好,除非另有说明。我们的销售条款符合比利时古今书商协会 (CLAM) 的做法和国际古籍书商联盟 (ILAB) 的规则。 * 运送:我们通过 Mondial Relay 为可用国家/地区提供经济实惠的价格,但在比利时我们使用 BPost。对于 500.00 欧元以上的书籍,我们使用 DHL 并提供追踪服务,费用由买家承担。**附加信息** 正文还包括一段关于阿拉斯徽章及其历史的段落,但这与所售书籍没有直接关系。1758 年 5 月 6 日,法国大革命杰出人物马克西米利安·德·罗伯斯庇尔诞生。在 19 世纪,阿拉斯经历了相对停滞,直到第二次世界大战,然后在 20 世纪后期经历了新的增长。大约 20 万年前,早期人类占领了该地区。在高卢时代,阿特雷巴特人定居在中世纪成为阿图瓦的领土上。公元前 56 年,罗马人在对高卢的战役中征服了阿拉斯。公元前 15 年左右,在 Baudimont 山上建立了 Nemetacum 村,这里成为阿特雷巴特人的首都。在 4 世纪,Nemetacum 发展成为一个重要的手工艺和商业活动中心,以其向罗马帝国出口纺织品而闻名。在 5 世纪和 6 世纪,日耳曼部落多次入侵该地区,包括在 406-407 年摧毁阿拉斯。由 Clodion the Hairy 领导的法兰克人征服了索姆河以南的地区。在 451 年阿提拉入侵高卢期间,这座城市与 Thérouanne 和 Tournai 等其他城市一起遭到摧毁。后来,阿拉斯的圣瓦斯特从兰斯和康布雷的雷米手中接过了主教的职位,在那里他与异教作斗争。他的一生因雅克·德·沃拉金的《黄金传说》而闻名。在 9 世纪,阿拉斯成为佛兰德伯爵的首选居住地,他们在那里建立了世袭的领主地位。1025 年,康布雷的主教杰拉德在圣玛丽教堂召开了一次宗教会议,以打击后来被镇压的异端邪说。大约在 1105 年,一场由小麦上的麦角菌引起的流行病影响了这座城市,然后就停止了。有些人将此称为“圣烛奇迹”。5 月 24 日至 25 日晚,一位神秘的女子出现在两位吟游诗人伊蒂尔和诺曼面前,两人因诺曼杀死伊蒂尔的兄弟而结为死对头。据信,这位女子是圣母玛利亚,她指示他们前往阿拉斯大教堂,那里有 144 人死于一种名为“热病”的致命疾病。这种疾病是由食用感染麦角菌的面包引起的。与许多法国城市一样,热病在春末肆虐该地区,因为冬天收获的最后一批谷物被霉菌污染。在阿拉斯,两名男子必须和解才能完成他们的使命,经过多次尝试,他们终于接受了。这个传奇故事被描绘在圣尼古拉斯教堂的四扇彩色玻璃窗上,并在 Notre-Dame-des-Ardents 教堂受到崇敬。阿拉斯在 12 世纪因圣瓦斯特修道院的制度和经济的发展而繁荣起来。该城有 11 座教堂,包括 1161 年重建的 Notre-Dame-en-Cité 大教堂。1163 年,阿拉斯获得了城市事务特许状,为佛兰德斯其他城市树立了榜样。1191 年,《阿拉斯条约》规定了佛兰德斯伯爵菲利普·阿尔萨斯的继承权。菲利普·奥古斯特死后没有继承人,他占领了阿图瓦,包括阿拉斯和其他地方。该城约有 35,000 名居民,他们通过纺织业开展贸易,业务远至东方。阿拉斯以其高品质的挂毯工坊而闻名,这些工坊建于 1313 年。该城的挂毯以不同的名称在意大利和英国享有盛誉。在波兰,克拉科夫的瓦维尔皇家城堡收藏了 100 多件文艺复兴时期的阿拉斯挂毯。这座城市后来从 14 世纪到 15 世纪成为勃艮第的一部分。1415 年,阿拉斯市长科拉特·德·蒙贝尔托在阿金库尔战役中阵亡。该市和阿图瓦成为国际冲突的重要边境地区。1430 年,圣女贞德被囚禁在该地区,可能是在圣洛朗布朗日的贝尔莫特城堡。1435 年的阿拉斯和约使法国瓦卢瓦王朝和勃艮第和解,结束了英属勃艮第联盟。1460 年,一场重大的巫术审判,被称为阿拉斯大巫术审判。在 15 世纪下半叶,阿拉斯经历了重大变化。 1463 年 8 月,路易十一从其叔父勃艮第的菲利普三世手中买下了索姆河的城市,1464 年 1 月,他平静地待在阿拉斯。国王于 1464 年 2 月批准举办为期三天的年度集市,以减少安特卫普和布鲁日集市带来的货币流通。根据《康夫兰条约》(1465 年)和《佩罗讷条约》(1468 年),路易十一必须将阿拉斯归还给勇敢的查理。查理死后,皇家军队于 1477 年 5 月占领了阿拉斯……经过一系列战斗,阿拉斯被迫支付了 43,000 埃居的巨额赔款。结果,这座城市很快就空无一人。1479 年,人们决定让来自法国各大城市、来自不同职业和背景的人们重新定居这座城市。然而,尽管他们获得了更多特权,但留下来的人却寥寥无几,返回家乡的人更是寥寥无几。1479 年,阿拉斯成为法国的一部分。《阿拉斯条约》(1482 年)规定,阿图瓦将成为未来查理八世的未婚妻奥地利玛格丽特的嫁妆。随着旧居民开始回归,尤其是资产阶级,这座城市开始慢慢重建。然而,1491 年,查理八世与布列塔尼的安妮结婚,导致阿拉斯被归还给哈布斯堡王朝,玛格丽特·德·奥特里什作为勃艮第玛丽的女儿在昂布瓦斯长大。在弗朗索瓦一世和查理五世的战争期间,阿图瓦地区存在争议。在 16 世纪,阿拉斯因法国和西班牙之间的冲突而陷入困境。到 1525 年,城中只剩下几百名商人。纺织业没有恢复,工匠们逃往里尔和鲁贝。马德里条约 (1526) 将阿拉斯割让给西班牙荷兰,但弗朗索瓦一世没有遵守,导致冲突持续不断。在宗教改革期间,阿拉斯仍然忠于天主教阵营,并于 1579 年向西班牙国王表示效忠。该城于 1640 年和 1654 年被路易十三围攻并征服,沃邦参与了防御,但没有指挥。该城与法国的和解最终于 1659 年通过比利牛斯条约得到批准。1667 年,国王路易十四和王后玛丽·特蕾莎进入阿拉斯,标志着该城进入新时代。从 1668 年起,沃邦将阿拉斯纳入他的防御体系,修建了城堡和防御工事。 1749 年,阿拉斯市和阿拉斯城最终统一在一个行政机构之下。到 1750 年,纺织业已基本消失,取而代之的是食品和手工业生产。马克西米利安·德·罗伯斯庇尔出生于阿拉斯,于 1789 年当选为第三等级议员。法国大革命期间,阿拉斯市由博学的贵族杜波依斯·德·福塞克斯领导,他后来成为加来海峡省省长。马克西米利安·罗伯斯庇尔长大的房子位于马克西米利安·德·罗伯斯庇尔街,现已修复,现在是一座博物馆,展示了罗伯斯庇尔的部分生活和该协会的历史。1790 年,阿拉斯被选为加来海峡省的首府,尽管其他城市如利斯河畔艾尔、加莱和圣奥梅尔也在争夺这一位置。从 1793 年 11 月到 1794 年 8 月,持续了 10 个月的恐怖统治。在此期间,阿拉斯市长兼加莱海峡省代表约瑟夫·勒邦实施了粮食限制,下令处决 400 人,并摧毁了许多宗教建筑,包括西岱圣母大教堂。勒邦本人最终于 1795 年 10 月被送上断头台。1804 年 8 月,拿破仑一世访问了阿拉斯,对大教堂的失修状况感到震惊。他决定拆除废墟,建造一座新大教堂,即圣瓦斯特修道院,并将其提升为大教堂。铁路的到来使阿拉斯市焕发活力,使其成为一个重要的枢纽。阿拉斯-里尔、阿拉斯-瓦朗谢讷、克莱蒙特-瓦兹-阿拉斯和杜伦-阿拉斯线路均于 19 世纪中叶完工,将阿拉斯与巴黎连接起来。1861 年,阿拉斯与敦刻尔克相连,但该市的人口和经济停滞不前,而里尔在工业革命期间经历了快速增长。 19 世纪末,在市长埃米尔·勒格雷尔 (Émile Legrelle) 的领导下,阿拉斯于 1898 年拆除了部分中世纪城墙,修建了宽阔的林荫大道、新的下水道系统和新火车站。1904 年,阿拉斯举办了一场国际博览会,展示了法国北部的工业活动,包括采矿、制糖、酿造、建筑材料和女性用品。该活动每天吸引超过 2,500 名游客,共和国总统埃米尔·卢贝 (Émile Loubet) 和教育部长埃米尔·孔布 (Émile Combes) 也前来参观。最后,阿拉斯在其历史上也曾是各种军事单位的驻地,包括第 33 步兵团、第 1 工兵营、第 2 工兵营、第 3 工兵营和第 5 步兵团。地方部队包括第 16 骑兵营和第 33 步兵团,后者于 1912 年至 1914 年间驻扎在阿拉斯。在此期间,该团的指挥官是菲利普·贝当上校,他的军官中有一位名叫夏尔·戴高乐的年轻少尉。第一次世界大战期间驻扎在阿拉斯的其他军事单位包括第 7 骑兵团、第 233 步兵团、第 525 列车团、第 601 公路巡防团和第 625 公路巡防团。战争对距离前线仅 10 公里的阿拉斯市造成了毁灭性的影响。 1914 年、1915 年和 1917 年的阿图瓦战役中,这座城市遭到严重破坏。该市的大教堂、宫殿和市政厅都被摧毁或严重受损。战争还对周围的乡村产生了深远的影响,森林和农田遭到炮火的蹂躏。1918 年,乔治五世国王访问了阿拉斯,视察了一艘名为“Boche Buster”的英国军舰,该舰安装在铁轨上,用于轰炸德国阵地。战后,阿拉斯市被授予法国战争十字勋章,以表彰其在战争中的作用。在接下来的 15 年里,这座城市得到了重建和扩建,许多新建筑和基础设施项目正在实施。然而,战争对当地环境产生了持久的影响,周围的大部分乡村在未来许多年里仍然伤痕累累、满目疮痍。阿拉斯市在 20 世纪初第一次世界大战后重建。由建筑师 René Danger 和 Léon Jaussely 设计的城市规划和扩建计划于 1923 年 3 月 16 日获得市议会批准。超过 190 名建筑师参与了重建工作。市中心以装饰艺术和国际风格重建。1919 年关于修复战争破坏的法律要求将历史古迹重建到原状。在阿拉斯,这包括钟楼、市政厅外墙、大广场外墙、英雄广场外墙、圣瓦斯特修道院和大教堂。1931 年,菲利普·贝当元帅为阿拉斯阵亡者纪念碑揭幕。在第二次世界大战期间,阿拉斯再次遭到破坏,但程度比第一次世界大战后要轻。1941 年 8 月,德国军队首次在阿拉斯城堡处决囚犯。 1942 年 4 月,抵抗运动对阿拉斯的盖世太保大楼发动了袭击。1942 年 7 月 4 日,铁路工人 Eugène d'Hallendre 和 Lucien Delassus 与抵抗运动领导人 Roland Farjon 会面,在该地区建立网络。1945 年至 1975 年,社会党代表兼部长 Guy Mollet 担任阿拉斯市长。在他任职期间,该市建造了主要公共建筑,包括一座新市政厅、四所普通中学和两所职业中学。然而,这座城市在经济上举步维艰,仍然被采矿盆地和里尔大都市所掩盖。当地工业和商业都衰落了。20 世纪 90 年代,随着阿尔图瓦大学的建立和一条将其与 LGV Nord 高速铁路网连接的 TGV 铁路线的建立,阿拉斯开始经历复兴。该市围绕当地商业和旅游业发展其服务业。如今,阿拉斯正在将其经济重新定位为农业食品和糖果生产以及物流。阿拉斯的徽章是一个中央盾形纹章,上面刻着阿图瓦伯国的徽章。根据查尔斯·德奥齐尔 (Charles d'Hozier) 1696 年的《法国将军纹章》,阿拉斯市还有其他徽章:天蓝色徽章,上面有银色横带,上面画着三只黑老鼠,头上戴着主教冠,上面有两个金色十字架,中间是长方形。该市目前的徽章并非 18 世纪之前。战争十字勋章的创建在 2024 年 2 月 5 日起的加莱海峡省档案馆中进行了讨论。Armorialdefrance.fr 也在 2023 年 10 月 11 日起提到了徽章。Desmulliez 和 Milis 于 2008 年发表了一部作品,讨论了阿拉斯的历史,包括其徽章。亨利·马丁 (Henri Martin) 撰写了 406 年法国的历史,查尔斯·德拉罗瓦 (Charles Delaroière) 在《1860-1861 年科学、文学和艺术鼓励协会回忆录》中讨论了贝尔格·圣威诺克的编年史。辛齐奥·维奥兰特 (Cinzio Violante) 描写了 11 世纪西方异端运动中的贫困。 Hervé Leroy 出版了一本名为 Arras 的书:2006 年的 La mémoire envoûtée 讨论了阿拉斯的历史,包括其徽章和建筑。圣尼古拉斯教堂和阿拉斯圣母院被列为阿拉斯的著名地标。该城市的历史发展也在各种资料中被讨论,包括 1814 年的法国国王第三次竞选法令。注意:此回复已被改写以保持核心信息并遵守用户的原始意图,同时保留原文中使用的语言。阿拉斯科学、文学和艺术学院论文集,1990 年,208 页,第 21 页和第 38-39 页。 Vauban - L'intelligence du territoire,巴黎,Nicolas Chaudun et Service historique de l'armée 编辑,2006 年,175 页。 (ISBN 2-35039-028-4),第 14 页。 166. Naissance de Joseph Lebon,加莱海峡公约国家代表,archivespasdecalais.fr,于 2023 年 2 月 9 日咨询。Arras - l'église Saint-Nicolas-en-Cité,arras.catholique.fr,于 2021 年 10 月 5 日咨询。ARRAS Retour sur les derniers paragraphs (réels et fictifs) de Napoléon,《北方之声》,2017 年 10 月 5 日,2021 年 10 月 9 日咨询。《Cent ans de vie dans la région》,Tome 1 : 1900-1914,《北方之声》版本,1998 年,第 45-47 页。 《大联合部队行军和行动的发明》、《步兵旅和步兵大队》、《步兵旅和步兵旅》、第 3 旅、JMO 1914 年 1 月至 1915 年 3 月 21 日,第 14 页。 4. Carte spéciale des régions dévastées : 08 SO, Douai [Sud-Ouest], Service géographique de l'armée, 1920 (lire en ligne) sur Gallica。 1919 年 12 月 28 日官方杂志,第 14 页15235. C'artouche,加来海峡:Histoire d'un renouveau,巴黎,Arthème Fayard 图书馆,2000 年,349 页。 (ISBN 978-2-213-60733-7,BNF 37213995),第 14 页。 37. La Grande Reconstruction en quelques lignes, arraslagrandereconstruction.fr, 2019 年 4 月。 Cent ans de vie dans la région, tome II : 1914-1939, La Voix du Nord editions, n° hors série du 17 février 1999, p. 37 53 和 43. Cent ans de vie dans la région, tome 3 : 1939-1958, La Voix du Nord editions, hors série du 17 juin 1999, pp. 41. Ouvrages généraux sur Arras: * Thierry Dehay et Delphine Vasseur, La Grande Reconstruction, Arras, la ville nouvelle à l'époque Art déco,editions Degeorge,2018。 * Henry (ou Henri ?) Gruy,Histoire d'Arras,文化与文明版本,doullens,dessaint,1967 年和/或 1979 年?,277 页。 * Alain Jacques、Pierre Bougard、Yves-Marie Hilaire 和 Alain Nolibos,Histoire d'Arras,Éditions Des Beffrois,1988 年,415 页。 * Hervé Leroy,阿拉斯:La mémoire envoûtée,La Madeleine,Light Motiv,2006 年,95 页。 (ISBN 978-2-9524717-1-8, BNF 40945203) * Edmond Lecesne, Histoire d'Arras : Depuis les temps les plus reculés jusqu'en 1789, Rohard-Courtin, 1880, 1 220 p. (lire en ligne) * C. Le Gentil,Le vieil Arras,1980 * Lestocquoy 主教,Arras au temps jadis,1944 * Alain Nolibos,阿拉斯:De Nemecatum à la communauté urbane,La Voix du Nord 版,2003 年 * Henri Potez,阿拉斯,布鲁塞尔;巴黎 : G. Van Oest et Cie, 1918 (lire en ligne) * Ouvrage Collectif, Méaulens-Saint-Géry : mille ans d'un quartier Sutton Editions, 2003. Michel Beirnaert、Maurice Bonnière 和 Alain Nolibos 对阿拉斯的专业著作和研究,《拿破仑在阿拉斯和丹维尔》(8 月) 29-31, 1804), Club d'Histoire de Dainville, 2004, 27 页。安妮·伯纳德,《阿拉斯水彩歌谣》,里尔,“La Voix du Nord”版,2006 年,180 页。 (ISBN 978-2-84393-098-0 和 9782843930980,BNF 40931809)Georges Bigwood,“阿拉斯金融家:对现代资本主义起源研究的贡献”,《Revue Belge de philologie et d'histoire》,1924 年,第 3 卷,第 3 期, p。 465-508(在线提供)Adolphe de Cardevacque,“阿拉斯耶稣会学院”,in Mémoires de la Commission départementale des Memorials historiques du Pas- de-Calais,1889 年,第 1 卷,第 465 页。 93-107(可在线获取)以及更多有关阿拉斯历史的文本和研究...Etat des Lettres Patentes about la ville d'Arras en mars 1477。