灵活的大尺寸 CMOS 成像仪:• 耐辐射平台的高电光性能(低噪音、高 FWC、双增益)• 操作灵活 – 卷帘快门、全局快门和 HDR 操作• 可拼接设计,支持不同格式• 10µm 像素间距基线 – 可轻松扩展到 5µm、20µm 或 40µm,且 NRE 极低• 可用作标准 Si 或 CMOS HiRho• 初始原型以 9k 和 4.5k 格式制造
新的计算工具,具有伪单细胞分辨率组织学(Spotiphy)的现场成像仪,采用机器学习算法来显着改善常规的空间转录组技术。这些技术着眼于捕获基因表达的网格上的预定义的“斑点”。这些本质上是在整个组织段中形成最终基因表达图像的像素。每个位置通常包含多个,通常是异质的细胞,使它们难以分类和分析单个细胞。
通过激光波长校准和霓虹灯灯泡光谱校准完成干涉仪的校准。内部校准目标(ICT)由一个高度发射的,深腔的黑体组成,它利用经过飞行的高级基线成像仪(ABI)遗产设计组成。ICT的温度知识大于140 millikelvin。包括一个被动振动隔离系统,以允许在50毫克环境中进行仪器操作。仪器光学元件与结构和仪器电子设备都热脱钩。整体仪器设计是模块化的,它允许平行组装和快速仪器集成。
♦ 监测地球表面,进行海洋观测及其环境。♦ 提供大气各种气象参数的垂直剖面。♦ 提供数据收集和数据传播能力。♦ 提供卫星辅助搜索和救援服务 (SA&SR)。机载有效载荷:成像仪有效载荷、测深仪有效载荷、数据中继转发器和 SA&SR 转发器。印度工业为其制造做出了重大贡献。GSLV-F14:GSLV-F14 是印度地球同步卫星运载火箭 (GSLV) 的第 16 次飞行,也是第 10 次采用本土低温级的飞行。
参考:[1] Paletta,Q.,Arbod,G.,Lasenby,J.,2021。深度学习辐照度预测模型的基准测试 - 深度分析。太阳能224,855–867。[2] Schmidt,T.,Stührenberg,J.,Schellhorn,M.,Blum,N.,Lezaca Galeano,J.,Hammer,A.,Von Bremen,L.太阳辐照基于所有天空成像仪网络的现状:可变性信息的高分辨率数据的价值。EMS年会2023,03.-08。2023年9月,Bratislava,Slowakei。
这一年尤其特殊,因为在美国大陆可以观测到两次日食。2023 年 10 月 14 日,新墨西哥州白沙导弹靶场 (WSMR) 非常接近日环食路径的顶峰,而 2024 年 4 月 8 日,弗吉尼亚州瓦洛普斯岛观测到近 80% 的日全食。六枚 Terrier-Black Brant 火箭被发射,用于研究日食期间的电离层,每个位置发射三枚。安柏瑞德航空大学的 Barjatya 博士是首席研究员,所有运载工具和有效载荷均表现正常。为了实现多点测量,有效载荷使用了最近开发且符合飞行要求的可弹射子有效载荷。探空火箭计划的首项任务是 2024 年春季在阿拉斯加州 Poker Flat 研究靶场 (PFRR) 进行的太阳耀斑活动。两个有效载荷,之前都用于不同的研究,聚焦光学 X 射线太阳成像仪 (FOXSI) 4 和高分辨率日冕成像仪耀斑 (Hi-C Flare) 已准备就绪,以应对太阳耀斑事件。PFRR 延长了发射窗口,每天都有发射机会。科学家使用 GOES X 射线数据监测太阳活动,并能够在 M 级耀斑期间发射。该活动的目标是获取太阳耀斑的多尺度、多波长观测数据,并为验证耀斑优化仪器提供可能性。
地面高光谱成像仪能够在观察期内测量未解析驻留空间物体 (URSO) 的光谱特征随时间的变化(或光谱时间特征)。了解特征对 URSO 属性的依赖性可用于开发用于识别物体的信息提取算法,并推断、分类、预测和诊断其状况和健康状况。鉴于 URSO 光谱时间数据的可用性有限,地面遥感观测可以通过基于物理的模拟模型和实验室数据进行补充,以支持特征利用算法的设计、开发、实施和验证。这在训练需要大量数据的机器学习模型时尤为重要。
提供多种平板电脑配置,配备不同的条形码和 RFID 模块。用户可以选择完全集成的 UHF(865 - 868 MHz ETSI / 920 - 925 MHz FCC)、13.56 MHz HF | NFC 或 125 / 134,2 kHz LF 阅读器。另一方面,它可以与 2D 条形码成像仪结合使用,从而轻松进行库存控制和报告。得益于内置的 13 百万像素后置摄像头(带自动对焦镜头 + LED 闪光灯)和 5 百万像素前置摄像头,维护区域的损坏报告从未如此简单。