与目前的平面传感器相比,曲面成像传感器可显著减小成像系统的尺寸、重量和成本,同时减轻离轴光学像差。在过去二十年中,解锁这些关键功能引起了主要参与者的兴趣。SILINA 一直在开发一种可适应各种传感器特性的 CMOS 图像传感器弯曲工艺。该工艺使图像传感器能够变形为各种形状,从而最大限度地提高每个成像系统的性能。事实上,曲面 CMOS 图像传感器 (CIS) 有助于制造紧凑型光学仪器,尤其是成像仪、望远镜和光谱仪。简化光学系统可以将光机约束从设计阶段释放到集成阶段。如今,自由曲面光学元件参与了满足紧凑、快速、广角和高分辨率系统共同需求的解决方案的开发。然而,自由曲面在制造和计量方面仍然极其昂贵。此外,场曲像差仍然难以校正,而曲面 CIS 则为此提供了合适的解决方案。2021 年初,SILINA 展示了球面和非球面 CIS 的制造,为光学系统设计开辟了新领域。光学设计师现在可以考虑各种传感器形状,通过考虑球面、非球面或更复杂的焦面来优化他们的系统。
4AOP 自动大气吸收图集操作版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲空间局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面HyMap 高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局
4AOP 自动大气吸收图集业务版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲航天局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面 HyMap高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中等分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局
可以轻松地从指示信号的阳极像素中确定。确定相互作用深度有两种可能性。第一个是使用阴极和阳极像素之间的信号比。由于短像素效应,阳极像素的诱导信号几乎不受相互作用深度的影响,而在平面阴极上诱导的信号直接取决于相互作用的深度。因此,阴极与阳极的信号比可以是相互作用深度的索引。第二种可能性是使用电子迁移时间,可以从诱导信号的脉冲形状确定。以前的可能性很难确定多个相互作用位置,而后者则适合同时确定它们。在包括SI,CDTE和TLBR在内的半导体材料中662 KEV Gamma射线的康普顿散射的线性衰减系数分别为0.18、0.37和0.47 cm -1。这些值是从NIST XCOM处的光子横截面数据计算得出的。(14),由于TLBR的线性衰减系数最高,因此TLBR有望用于构建具有高检测效率的康普顿成像仪。在这项研究中,我们使用制造的像素化TLBR半导体检测器来证明康普顿成像实验,其中使用电子迁移时间确定相互作用深度。我们还讨论了确定相互作用点的顺序顺序的策略,这对于基于康普顿成像估算入射伽马射线方向很重要。
成像光谱学作为一种新的地球遥感方法越来越受到关注。随着高光谱遥感器(包括机载和太空载)的出现,以及快速计算系统的高存储容量和用于存储和处理高光谱数据的先进软件,现在可以检测和量化各种地球资源材料(Goetz,2009 年)。作者和其他人(Goetz 等人,1985 年)提出的成像光谱法的原始定义是“获取数百个连续、已配准的光谱带中的图像,以便可以为每个像素导出辐射光谱”。高光谱传感器或成像光谱仪收集的独特数据既是一组空间连续的光谱,也是光谱连续的图像(Goetz 等人,1985 年)。高光谱遥感最早的应用之一是地质测绘及其在矿产勘探中的商业作用。 Staenz (2009) 记录了陆地成像光谱学的发展,该技术始于 20 世纪 70 年代末,由美国宇航局喷气推进实验室 (JPL) 和加拿大政府/私人合作伙伴(渔业和海洋部/Moniteq)共同开发,随后在美国开发了机载成像光谱仪 (AIS;Vane 和 Goetz,1988),在加拿大开发了荧光线成像仪 (FLI;Gower 等人,1987),并分别于 1983 年和 1984 年首次获取数据。这些活动促成了 1987 年第一台可见光和近红外
摘要:船上的高级地静力辐射成像仪(AGRI)卫星4A(FY-4A)卫星提供可见的辐射,其中包含有关云和降水量的关键信息。在这项研究中,使用局部粒子细胞(PF),通过观察系统模拟实验(OSSE)评估了同化Fy-4a /agri全套可见辐射对对流系统模拟的影响。将局部PF与天气研究和预测模型(WRF)模型相结合的数据同化研究床(DART)实施。为期2天的数据AS-SIMILATION(DA)实验的结果在天气量表上产生了令人鼓舞的结果。与局部PF相关的FY-4A /Agri可见的辐射显着改善了云水路路径(CWP),云覆盖率,降雨速率和降雨面积的分析和预测。此外,在多云地区附近的温度和水蒸气混合比产生了一些积极影响。敏感性研究表明,最佳结果是通过与模型网格间距(20 km)和足够短的循环间隔(30分钟)相当的定位距离来实现的。但是,由于可见的辐射中缺乏相关信息,局部PF无法改善云垂直结构和云相。此外,将局部PF与集成调节器(EAKF)进行了比较,并且表明即使在后者的集合成员的数量增加一倍的情况下,局部PF的表现也超过了EAKF,这表明局部PF的巨大潜力在吸收了可见的可见光范围内。
上下文。在先前的研究中估计了冠状环中扭结波的能量频道。最近的数值模拟表明,扭结振荡可以在磁性流管中诱导开尔文 - 螺旋不稳定性(KHI)。这种非线性过程打破了通常包含在先前的本本征分析中的假设。因此,需要重新检查当前能量磁通的分析表达式。目标。在当前的工作中,我们的目标是将数值频率与以前的分析公式进行比较,并为冠状环中扭结波的能量频率估算而建立修改。方法。在理想的磁流失动力学(MHD)的框架内工作,我们进行了三维(3D)冠状动脉圆柱振荡的模拟。还采用了前向模型将我们的数值结果转化为使用FOMO代码的可观察结果。结果。我们发现,先前对扭结能量频道的估计是合理的,直到在KHI充分开发之前。然而,随着小涡流的发展,从分析公式中得出的能量频道变得小于根据我们的数值结果计算得出的总po弹孔。此外,当降低原始数值分辨率以匹配逼真的仪器分辨率时,例如,太阳能轨道(SO)上的极端紫外成像仪(EUI)时,能量频率比数值小得多。结论。应通过将其乘以约2倍来修改根据分析公式计算出的能量频道。涉及基于SO / EUI观察的能量频道估计,该因素应大约在3和4之间。< / div>。
摘要:在接下来的几年中,欧洲的气象卫星剥削组织(Eumetsat)将开始部署其下一代地理气象学卫星。METEOSAT第三代(MTG)由四个成像(MTG-I)和两个发声(MTG-S)平台组成。卫星是三轴稳定的,与旋转稳定的两代MeteoSat不同,并携带两组遥感仪器。因此,除了提供连续性外,新系统还将提供对地静止轨道前所未有的能力。MTG-I卫星上的有效载荷是16通道柔性组合成像仪(FCI)和闪电成像器(LI)。MTG-S卫星上的有效载荷是高光谱红外声音(IRS)和由欧洲委员会提供的高分辨率紫外线 - 可见的 - 近红外(UVN)Sounder-Sounder-4/UVN。今天,中国宫殿轨道的高光谱声音由中国宫颈轨道4A(FY-4A)卫星卫星地静止的静态干涉测量器(GIIRS)仪器提供,闪电映射器在FY-4A上可用,在FY-4A上可用,在国家大洋洲和大气管理(NOAAA)上(NOAA)和16和16和16 and-16 and-16 and-17 Satellites。因此,这类工具的科学和应用的发展具有坚实的基础。但是,IRS,LI和Sentinel-4/UVN在地静止轨道上是欧洲的挑战性。四个MTG-I和两个MTG-S卫星的设计分别提供20年和15。5年的运营服务。大约在一年后,预计将在2022年底和第一个MTG-S发射。本文介绍了四种工具,概述了产品和服务,并介绍了更多应用程序的演变。
最佳云分析 (OCA) 算法最初是在 1997 年授予卢瑟福阿普尔顿实验室 (RAL) 的一项研究中开发的,并于 2001 年编码为原型系统。该算法由 EUMETSAT 进一步开发,旨在提供 Meteosat 第二代 (MSG) 旋转增强可见光和红外成像仪 (SEVIRI) 仪器的 Day-2 产品。最新版本的操作算法允许识别多层云情况并检索双层场景的云属性 (Watts 等人,2011)。OCA 还提供了由最佳估计方法得出的不确定性的估计。自 2013 年 6 月以来,OCA 产品已作为演示产品以全重复周期 (15 分钟) 频率进行操作生成。OCA 检索到的云属性包括云顶压力、云光学厚度和云有效半径。OCA 算法已针对气候数据记录处理进行了轻微调整。调整主要在于使用不同的输入,因为用于近实时 (NRT) 的输入不适用于重新处理(云掩模、晴空反射图),并且在整个时间段内也不均匀(重新分析)。验证报告 (EUMETSAT, 2021) 中提供了 NRT 和 CDR 产品之间的差异。OCA Release 1 气候数据记录 (CDR) 涵盖了从 2004 年到 2019 年的 MSG 观测期,提供了均匀的云属性时间序列,它将 NRT 产品的时间延长了 9 年多。OCA Release 1 计划用作生成新的大气运动矢量 (AMV) CDR 的输入,并可能包括风矢量高度的不确定性估计。
摘要:纳豆激酶 (NK) 是一种强效的溶栓酶,可溶解血栓,在心血管疾病的治疗中被广泛使用。然而,由于其高分子量和蛋白质性质,稳定性和生物利用度问题使其有效输送仍然很困难。在本研究中,我们通过反相蒸发法开发了新型 NK 负载非靶向脂质体 (NK-LS) 和靶向脂质体 (RGD-NK-LS 和 AM-NK-LS)。通过 Zetasizer、SEM、TEM 和 AFM 进行物理化学表征 (粒度、多分散性指数、zeta 电位和形态)。Bradford 测定和 XPS 分析证实了靶向配体的表面结合成功。通过 CLSM、光子成像仪 optima 和流式细胞术进行的血小板相互作用研究表明,靶向脂质体的血小板结合亲和力明显较高 (P < 0.05)。使用人体血液和 CLSM 成像进行的纤维蛋白溶解研究进行了体外评估,证明了 AM-NK-LS 具有强大的抗血栓功效。此外,出血和凝血时间研究表明靶向脂质体没有任何出血并发症。此外,使用多普勒流量计和超声/光声成像对 Sprague-Dawley (SD) 大鼠体内 FeCl 3 模型进行的体内实验表明,靶向脂质体对血栓部位的血栓溶解率增加且具有强大的亲和力。此外,体外血液相容性和组织病理学研究证明了纳米制剂的安全性和生物相容性。关键词:纳豆激酶、血栓溶解、纤维蛋白溶解、血栓靶向、光声成像