为了提高晶体管的密度、提高性能、降低功耗和降低每个晶体管的成本,人们对晶体管尺寸的要求推动了接触多晶硅间距 (CPP) 的缩小,如图 1 和图 2 所示,这反过来又需要缩小栅极长度以释放更多空间来降低接触电阻。由于金属栅极图案的空间有限,RMG 的持续缩小对 7nm 及更高技术的多 Vt 提出了挑战。此外,自对准接触 (SAC) 成为未来技术节点上提高器件成品率的关键要素。因此,需要采用简化的 RMG 堆叠集成方案来确保良好的栅极凹槽控制和均匀的 SAC 封装。由不同栅极金属厚度 (金属多 Vt) 实现的多 Vt 选项将在大幅缩小间距时面临可扩展性挑战。在这项工作中,我们提出了一种无体积多 Vt 解决方案来定义具有不同偶极子层厚度的所有 Vt 类型。氧化物偶极子层与基于 SiOx 的界面层 (IL) 相互作用,产生 Vt 偏移,伴随其基团电负性差异 [6]。所提出的方案被证明与双 WFM 工艺兼容,并且由于其体积小,可适用于高度缩放的设备和新颖的设备架构。在同一芯片上集成多个偶极子厚度非常具有挑战性,因为偶极子厚度非常薄,通道可能会受到图案损坏。在本文中,我们
表面微加工成功的光学应用之一是开发静电驱动微机械镜阵列(协调、可移动的反射或折射元件的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜段,用作较大显示器中的一个像素,元件的驱动使用二进制数字控制信号并行协调。在这样的系统中,已经证明简单微机械致动器的制造成品率可以接近 100%。此外,已经确定可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化的 CMOS 电子阵列上构建 MEMS 结构来实现的。已经提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微机械连续膜可变形镜。在自适应光学中,重要的是可变形镜既连续又可精确调节。本文描述的设备是使用表面微机械技术制造的第一种连续镜。� 体微机械连续镜之前已经展示过。2 � 表面微机械镜已在波士顿大学设计、制造和测试。该设备由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于底层表面法向静电致动器阵列上。两个特点将该设备与以前的表面微机械镜系统区分开来。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有因分段边缘而产生的衍射干涉,也没有因填充因子低于 1 而导致的光强度损失。此外,新的可变形镜面装置可以精确、连续地控制镜面元件
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。
摘要:确保长期可靠运行是当今电子系统面临的最大挑战之一。元件对各种电气、热、机械、化学和电磁应力的脆弱性增加,对实现各种关键任务应用所需的可靠性构成了巨大威胁。降额可以定义为将设备上的电气、热和机械应力限制在其规定或已证实的能力以下的水平,以提高可靠性。如果希望系统可靠,那么主要因素之一必须是保守的设计方法,包括部件降额。许多制造商意识到需要降低电子和机电部件的额定值,因此制定了内部降额实践指南。在本项目中,选择了用于航空航天应用的陷波滤波器电路。将使用 E-CAD 工具进行电路模拟。将按照 MIL-STD-975A 中给出的方法进行进一步的降额分析,并提供符合此标准的设计裕度。任何产品成功的关键在于其可生产性、质量和可靠性。开发新产品、制作原型并验证其性能需要付出大量努力。如果要大批量生产并尽量减少拒收,则需要付出更多努力。拒收数量最少或首次成品率提高可节省生产成本、测试时间和资源。因此,它有助于降低产品成本。还要求交付给客户的产品在其预期的生命周期操作压力下能够令人满意地运行而不会出现故障。它应该在其预期的使用寿命内或需要运行时继续保持这种性能,这一因素称为可靠性。可靠的产品性能可提高客户满意度并为制造商树立品牌。组件对各种电气、热、机械、化学和电磁应力的脆弱性增加,对实现各种关键任务应用所需的可靠性构成了巨大威胁。降额是在低于部件额定值的应力条件下运行的做法。简介:
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。
2 法政大学 关键词:GaN-on-GaN、肖特基势垒二极管、均匀性、光致发光、功率器件 摘要 为了大规模生产 GaN-on-GaN 垂直功率器件,n 漂移层在 10 15 cm 3 范围内的净施主浓度 ND NA 的晶圆级均匀性是一个重要因素,因为它决定了击穿电压 VB 。在本研究中,我们通过控制 GaN 衬底的偏角展示了 GaN 肖特基势垒二极管晶圆级均匀性的改善。通过 MOVPE 在具有各种偏角和偏差的独立 GaN 衬底上生长外延结构。使用电容电压测量(C V)、光致发光(PL)和二次离子质谱(SIMS)仔细分析了 ND NA 的变化。与碳有关的NA变化导致了NDNA的不均匀性,而这与晶圆的衬底偏角有关。通过最小化偏角的变化可以提高NDNA的均匀性。引言在GaN衬底上制造的垂直结构GaN功率开关器件对于高效功率转换系统很有前景,因为这些器件提供极低的导通电阻(R on)和高击穿电压(VB)[1-3]。减少对器件成品率和可靠性致命的致命缺陷是一个重要问题。GaN-on-GaN二极管初始故障机理已有报道[4],其中具有外延坑的二极管在非常低的反向电压下表现出严重击穿。此外,最近有报道称表面粗糙度会影响可靠性[5]。在使用金属有机 (MO) 源引入碳 (C) 杂质时,n 漂移层中的净施主浓度必须控制在 10 15 cm3 范围内才能获得高 VB [6]。通过低施主含量,可以在负偏置条件下抑制 pn 或肖特基界面处的峰值电场 [7, 8]。然而,关于垂直 GaN-on-GaN 器件中净施主浓度的晶圆级均匀性的报道很少。
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。
1. 简介 过去 50 年来,摩尔定律的扩展为硅片扩展和不同 IP 的同质 SoC(片上系统)集成提供了模板,推动了微电子行业的发展。展望未来,通过封装和微系统的物理特性、电气和热属性的变化,HI 有望日益补充摩尔定律的扩展并继续提供改进的功能。现有和新型封装架构将继续成为维持和促进微电子行业增长的主要推动因素。这些架构支持新颖的异构 SiP(封装中系统)配置,代表了成本性能优化微电子系统的关键创新 [1-8]。从历史上看,封装的主要目的是为芯片提供机械保护和为硅片功能提供空间转换。封装创新专注于最大限度地减少对硅片尺寸扩展、功耗、性能和延迟的影响,同时最大限度地发挥摩尔定律带来的性能机会。此外,半导体封装行业也生产了数十年的 MCP(多芯片封装),主要是为了加快产品上市时间和满足关键的 HI 需求(例如 DRAM 集成)。当今的行业趋势表明,对 HI 的需求日益增加,这是由添加多样化功能的需求(通常通过来自多个不同供应商的硅节点上的不同 IP 实现)[9]、提高硅片成品率的弹性以及持续快速上市的需求所驱动。2D 和 3D 封装架构是理想的异构集成平台,因为它们在紧凑的尺寸下提供组件之间的短、节能、高带宽连接。异构封装技术:• 使用不同的通信协议提供节能、高带宽的封装内 I/O 链路;• 支持多种封装外 I/O 协议;• 为单端和差分信号提供噪声隔离;• 管理日益增长的冷却需求;• 支持复杂的电力输送架构;• 满足从高性能服务器到灵活的可穿戴电子产品的各种应用功能、外形和重量限制; • 满足不同细分市场和应用的广泛可靠性要求; • 提供经济高效、高精度和快速组装。使用先进封装开发产品需要采用综合方法,包括与产品架构师、系统架构师、工艺工程师、材料工程师和可靠性工程师的协作,以及详细了解各种架构的基本热、机械和电气特性。