摘要:新技术正在从根本上改变事故的成因,并需要改变所使用的解释机制。我们需要更好地、更少主观地理解事故发生的原因以及如何防止未来的事故。最有效的模型将超越归咎,而是帮助工程师尽可能多地了解所有相关因素,包括与社会和组织结构相关的因素。本文提出了一种基于基本系统理论概念的新事故模型。这种模型的使用为引入独特的新型事故分析、危险分析、事故预防策略(包括新的安全设计方法、风险评估技术以及设计性能监控和安全指标的方法)提供了理论基础。
伯克利地质年代学中心和加州大学伯克利分校的舒斯特实验室 实验室描述 PI Shuster 负责 BGC 和 UCB 的实验室设施,用于样品制备、特性分析、(U-Th)/He 和 4 He/3 He 热年代学以及宇宙成因核素分析。 设施包括: BGC 惰性气体实验室。BGC 惰性气体实验室设有: • 惰性气体热年代学实验室 (NGTL)。该设施设计用于 4 He/3 He 热年代学、40 Ar/39 Ar 热年代学、通过控制热提取表征惰性气体扩散动力学以及宇宙成因 21 Ne 和 3 He 测量。该实验室还可用作传统的 (U-Th)/He 实验室。NGTL 包括 (i) 经过校准的双目显微镜和摄像系统,用于制备和测量样品的几何形状; (ii) 超高真空 NG 提取系统,包括三个带有光束传输光学器件和高温计和热电偶反馈控制的二极管激光系统,在 175-1500 o C 之间提供优于 +/- 10 o C 的精度和准确度;(iii) 气体净化系统,包括 Janis 低温系统和校准标准和气体加标系统;(iv) Pfeiffer 气源四极杆质谱仪,用于使用同位素稀释测量 NG 丰度;(v) 可调收集狭缝 MAP-215-50 扇区场 NG 质谱仪,用于高精度同位素比测量;(vi) 激光烧蚀 ICPMS 实验室(如下所述),用于测量 U 和 Th。NGTL 的初始建设部分由 NSF MRI 拨款 EAR-0618219 资助,授予 PI Shuster,并继续获得 Ann 和 Gordon Getty 基金会的支持。 NGTL 实验室包括第二个可调收集狭缝 MAP-215-50 NG 质谱仪,该质谱仪配备自动稀有气体提取和低温纯化系统,可与上面描述的 NGTL 激光加热系统耦合,并针对宇宙成因 3 He 和 21 Ne 测量进行了优化,最初由 NSF I&F 计划拨款 EAR-1054079 资助给 PI Shuster。BGC U 子实验室。BGC U 子实验室包括一个带有过滤空气供应的温控仪器室,其中设有 LA-ICPMS 设备;一个相邻的 HEPA 过滤清洁化学实验室;以及专用的样品制备设施。• 激光烧蚀 ICPMS 实验室。该设施用于通过同位素稀释和激光烧蚀测量磷灰石和/或锆石中的 U 和 Th 浓度,以进行 (U-Th)/He 测定和 4 He/3 He 热年代学。该设备还用于通过同位素稀释法测量石英中的铀和钍,这对于解释宇宙成因 21 Ne 测量结果必不可少。它由 Thermo Fisher Scientific Neptune Plus 多接收器 ICPMS 组成,配有九个法拉第探测器,带有计算机切换的 10 11 和 10 12 欧姆输入电阻、具有离子计数和高丰度灵敏度离子能量过滤器的离散倍增电极电子倍增器、大容量干式接口泵以及高性能样品和撇取锥。该实验室最初由 NSF MRI 拨款 EAR-0930054 资助给 PI W. Sharp 和 D. Shuster,并继续获得 Ann and Gordon Getty 基金会的支持。UCB 和 BGC 的湿化学实验室。BGC 和附近的加州大学伯克利分校地球和行星科学系的 PI Shuster 可以使用专用的湿化学实验室空间。这些实验室包括标准通风柜(适用于矿物分离、酸蚀样品制备和常规(即非空白限制)石英中的 Be 提取)和一个过滤空气层流下流罩(适用于低空白 Be 提取化学)。
• 风险建模: - 使用系统功能模型提供有关风险来源的知识。- 确定有关促进、预防、减轻或加剧危险的因素和条件的信息。- 识别组织压力源的影响。- 开发事故成因模型、危险描述和危险关键性。• 分析概念开发: - 调查和设计决策支持、风险指标和安全绩效衡量的概念。利用定性和定量方法来评估系统组件性能的充分性、危险的存在和严重性、系统组织防御的稳健性以及系统安全属性的质量。• 数据采集: - 开发数据收集方法、工作任务工具、样本大小计划并评估现有数据源。• 分析方法和决策支持系统 (DSS): - 为最终用户开发 DSS 工具。
通过短肽桥与Murnac残基交叉连接的N-乙酰葡萄糖和N-乙酰基氨基酸(MURNAC)的多个单位网络。真菌CWS(FCW)由几层原纤维组成。组成因物种而异,但是它们主要组成(1→3)/(1→6) - 𝛽 -glucan,(1→3) - 𝛼 -glucan,几丁质和糖蛋白。它由80-90%的糖蛋白,脂质和其他次要成分组成。酵母CWS由(1→3)/(1→6)-Glucan,甘露蛋白和几丁质组成。红色藻类含有带有亚硫酸盐残基的星系杂聚物以及甲基化的糖,甘露糖,阿拉伯糖和核糖等次要成分。但是,基本的构建块是醛酸3- o-(α-d-
基于沉积物储存的流域沉积物通量估计不仅取决于体积精度,还取决于沉积物测年的精度和准确性。在这一领域,直接沉积物测年技术 (TL、OSL、ESR) 发生了一场革命,使预算研究摆脱了放射性碳的限制和偏差。特别重要的是使用宇宙成因核素进行测年,但它也可用于推导长期侵蚀率,但只能使用稳态假设。最后,讨论了沉积物预算方法在未冰川盆地中更新世阶地楼梯的初步应用。有人认为,只有现在我们才有可用的技术,能够在大于零级盆地的空间尺度和大于直接观测所涵盖的时间段内产生准确的沉积物预算估计。
摘要。交通、国防、电信、核电站、机器人和自动驾驶汽车等现代系统正变得越来越复杂。这导致了新型系统故障、安全问题和严重事故。传统的系统设计和安全分析方法不足以捕捉现代社会技术系统的复杂性和动态性。本文重点介绍基于系统理论和认知系统工程的社会技术系统安全和事故建模的新方法。我们研究组织社会学家对管理和运营高风险技术系统的复杂组织的安全贡献。本文建议进行涵盖技术、人为因素和组织社会学的跨学科研究,以便从广泛的系统视角捕捉现代社会技术系统的复杂性,从而理解安全和事故成因的多维方面。
本指南介绍了在绝缘样品的 XPS 分析过程中控制表面电荷的方法以及提取有用结合能信息的方法。本指南总结了表面电荷的成因、如何识别表面电荷的发生、最小化电荷累积的方法以及在使用电荷控制系统时调整或校正 XPS 光电子结合能的方法。在 XPS 测量过程中,有多种方法可以控制表面电荷累积,并介绍了先进 XPS 仪器上的系统示例。没有单一、简单且万无一失的方法来提取绝缘材料的结合能,但介绍了几种方法的优点和局限性。由于方法各异且每种方法都有局限性,研究人员必须准确描述研究报告和出版物中应用的程序。