觅食时,海洋哺乳动物进行了重复的潜水。当动物表面再灌注时,将氧气容易地用于电子传输链,这会导致活性氧的产生增加,并有氧化损伤的风险。在血液和多种组织中,例如心脏,肺,肌肉和肾脏,海洋哺乳动物通常表现出抗氧化剂的升高。但是,功能完整性对于生存至关重要的大脑很少受到关注。我们先前观察到在连帽密封(Cystophora cristata)的皮质神经元中,几种抗氧化基因的表达增强。在这里,我们研究了竖琴密封(Pagophilus groenlandicus)和带帽密封的视觉皮层,小脑和海马中的抗氧化基因表达和酶活性。此外,我们测试了几个基因的阳性选择。我们发现,与小鼠(Mus Musculus)相比,海豹脑中的抗氧化剂(例如超氧化物歧化酶(SOD)(SOD),谷胱甘肽过氧化物酶(GPX)和谷胱甘肽(GSH)相比,海豹脑中的组成型增强了。可能是后一种系统的活性是应力诱导的,而不是组成型的。此外,谷胱甘肽 - 转移酶(GST)家族的一些但不是全部成员似乎更加表达。我们没有发现阳性选择的签名,表明所研究的抗氧化剂的序列和功能是在pinnipeds中保守的。
摘要:基于聚合物的除草剂纳米载体表现出了提高除草剂功效和环境安全的潜力。这项研究旨在开发,表征和评估对草甘膦基于天然的聚合物纳米系统的靶向和非目标生物的毒性。聚合物(例如壳聚糖(CS),Zein(Zn)和木质素(LG))用于合成中。纳米系统的大小,表面电荷,多分散指数,封装效率,对杂草物种的毒性(Amaranthus hybridus,ipomoea grandifolia和eleusine indica)以及综述(RR)Ready(RR)作物,土壤呼吸和土壤呼吸和酶活性。与商业草甘膦(40%)相比,最稳定的系统是Zn与交联的poloxamer(PL)的组合,杂草控制功效较高(90-96%)。对I. Grandifolia和E. Indica没有观察到没有改善。在RR作物,土壤呼吸或土壤酶中未观察到草甘膦毒性,表明在这些模型中没有纳米成型的毒性作用。Zn- PL系统可以是使用环保材料的草甘膦递送的有希望的替代方法,并提高了农业杂草控制的效率。关键字:纳米糖剂,锌,木质素,杂草控制,可持续性
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FLayout-of- Masudas-navigation-buoy-based-on-10-On-the-right-hand-side-details- of_fig1_281307478&psig=AOvVaw3SxDnTm6sc5hqJZ mUdYEU&ust=1709807453875000&source=images& cd=vfe&opi=89978449&ved=0CBEQj xqFwoTCMje0qG334QDFQAAAAAdAAAAABAD 上图是一个简单的水上浮标,展示了水上浮标的基本结构和机制。水上浮标必须为柱形,根据简介,浮标的高度必须在海面以上 1400 毫米至 1800 毫米之间,直径为 500 毫米,高度可以用肉眼看到并配有照明,这符合 2011 年 9 月发布的 BS ISO 20712-1:2008 标准。该标准于 2019 年更新为 BS ISO 7010:2019 图形符号 - 安全颜色和安全标志。浮子组件浮子组件提供特定的浮力水平,如果它排出的体积合适,密度正确,包括整个浮标的质量。简介指出浮标必须易于固定,浮动组件必须由易于固定且高度坚固的材料制成。浮动组件的例子包括 (HDPE) ope 浮子由压缩成型的聚氯乙烯 (PVC) 制成。一些浮子可以由硬质聚苯乙烯(PS 泡沫塑料)、FKM 橡胶和 VMQ 橡胶制成,如果用空气(特别是氮气)充气以帮助漂浮。
本工作采用定向冷冻干燥技术制备具有定向多孔结构的三维高导电纤维素纳米纤维 (CNF)/Ti 3 C 2 T x MXene 气凝胶 (CTA),然后通过热退火 CTA、随后的真空辅助浸渍和固化方法制备热退火 CTA (TCTA)/环氧树脂纳米复合材料。结果表明,TCTA/环氧树脂纳米复合材料具有三维高导电网络,超低渗透阈值为 0.20 vol% Ti 3 C 2 T x 。当 Ti3C2Tx 的体积分数为 1.38vol% 时,TCTA/环氧纳米复合材料的电导率(σ)、电磁干扰屏蔽效果(EMI SE)和 SE 除以厚度(SE/d)值分别达到 1672 S m -1、74 dB 和 37 dB mm -1,与之前报道的相同填料含量的聚合物纳米复合材料相比几乎是最高值。此外,与不含 Ti3C2Tx 的样品相比,TCTA/环氧纳米复合材料的储能模量和耐热指数分别提高到 9792.5 MPa 和 310.7℃,提高了 62% 和 6.9℃,表现出优异的力学性能和热稳定性。所制备的轻质、易于加工、可成型的 TCTA/环氧纳米复合材料具有优异的 EMI SE 值、优异的机械性能和热稳定性,极大地拓宽了 MXene 基聚合物复合材料在 EMI 屏蔽领域的应用。
•我们对在其最初的概念阶段的想法感兴趣,而不是完全成型的项目或产品1。•挑战是企业家精神的学习和技能发展机会,有可能转化为商机。我们要您解决哪些问题?今年的主题:自然,我们为今年的气候挑战选择了“自然”的主题,以鼓励参与者考虑自然世界的重要性。我们希望参与者考虑我们的环境的状况,并将继续受到气候危机的影响,以及基于自然和自然的解决方案如何减轻气候变化的影响,并帮助我们适应未来的变化。在气候挑战中提出的解决方案直接与自然主题有关。主题在需要的地方提供灵感来源,并鼓励横向思维。自然环境为从食物到药物再到我们呼吸的空气至关重要的服务至关重要。不仅如此,而且自然在缓解和适应气候变化的影响中起着至关重要的作用。海洋,森林,泥炭沼泽和湿地可以用作碳水槽,有助于去除温室气体排放,而沿海地区的红树林则可以避免我们免受气候引起的极端天气,例如暴风雨。人为的过度使用资源,从化石燃料到鱼类,都促进了环境退化,生物多样性丧失和气候变化。由此产生的性质和气候危机是密不可分的,没有另一个人,我们将无法解决一个。
图2 PTM研究中的关键范例。在所有面板中(以及本文中的其他数字),用浅红色显示了修改,绿色的蛋白质底物,蓝色的作者,黄色的橡皮擦和紫罗兰的读者。(a)通过蛋白质磷酸化调节酶糖原磷酸化酶的糖原降解活性。该酶的磷酸化和去磷酸化最终受激素胰高血糖素和胰岛素调节,通过用虚线箭头示意性地指示的信号通路。(b)蛋白质泛素化作为26S蛋白酶体降解的信号。泛素化反应是由由E1,E2和E3蛋白组成的酶促级联反应,需要ATP。底物上的Degron基序通过与E3连接酶进行物理相互作用来促进泛素化。poly(ubiquityl)atted底物通过26S蛋白酶体内的受体蛋白识别,展开和降解。(c)通过组蛋白代码调节染色质结构和基因表达。组蛋白尾部的蛋白质修饰是由作者酶安装的,由橡皮擦酶除去,并被读取器蛋白识别。(d)基于面板C的PTMS调节蛋白质的一般方案。(E)从单个蛋白质编码基因产生多种蛋白质成型的变异来源。单个基因可以剪接以产生多种同工型,可以通过差异PTM模式进一步多样化。该图中省略的蛋白质成型多样性的其他来源包括,例如,单核苷酸多态性和替代翻译起始位点。ac,乙酰化;我,甲基化; P,磷酸化; UB,泛素。
摘要:短期电子设备的不断增长固有地导致大量有问题的废物,这构成了环境污染的风险,危害人类健康并引起社会经济问题。因此,为了减轻这些负面影响,我们的普遍兴趣是将传统材料(聚合物和金属)替换为电子设备中的传统材料(聚合物和金属),并在可能的情况下,同时考虑了功能,制造性和成本的各个方面。在这项研究中,我们探索了可生物降解的生物塑料的使用,例如聚乳酸(PLA),与多羟基丁酸(PHB)(PHB)(PHB)以及与Pyrolyzed的木质素(PL)以及多壁处理的碳nan型(My naneS)(梅尔氏含量)相结合。电子组件,包括等离子体处理,浸入涂料,喷墨和丝网印刷,以及热混合,挤出和成型。我们表明,经过短暂的氩等离子处理,对热泡PLA-PHB混合纤维的表面进行了短暂的表面处理后,单壁碳纳米管(SWCNTS)的渗透网络(SWCNT)可以通过浸水层沉积至1kΩ /□的薄板电阻,以制造能涂层的电极,以制造能力触摸触摸传感器的电极。我们还证明,作为浮光电介质底物的生物塑料膜适用于通过喷墨和屏幕印刷的手段来沉积SWCNT和AG(分别为1kΩ /□和1Ω /□)的导电微图案(分别为1kΩ /□和1Ω /□),并具有潜在电路板的应用。关键字:生物塑料,复合材料,混合物,热解木质素,电气设备,电极,触摸屏,EMI屏蔽■简介此外,我们以PL和MWCNT为PLA的复合和成型的复合材料是电磁干扰屏蔽材料的优秀候选物,其k频段无线电频率(18.0 - 26.5 GHz)分别屏蔽了高达40和46 db的效果。
通过参数下转换(PDC)光子对提供的量子相关性是量子信息科学的强大工具。可以利用极化,空间和时频程度来产生强大而可验证的两光子纠缠[1-4]。这些相关性启用了诸如量子状态信息[5,6],设备独立量子密钥分布[7]和远程状态准备[8-12]等技术。为了利用这些资源来执行此类任务,有必要控制量子相关性的产生,并以期望的自由度开发一致的测量技术。光子学为实施多方量子通信协议和长距离量子实验提供了无可争议的平台[13 - 15],但每个光子自由度都带来相关的优势和挑战。尤其是时间频率的自由度,提供了高维量子字母,非常适合基于纤维的通信网络和集成的波导设备[3,14,16]。纠缠在PDC来源中也自然存在,并且可以使用脉冲成型技术和材料分散工程来控制[17]。然而,PDC状态的基本时间频率模式,也称为暂时的Schmidt模式[18],无法与传统的时间或频率测量值直接解析。最近开发了控制和操纵纠缠状态的时间模式结构的方法,为支持纠缠的光子技术提供了强大的资源[19 - 24]。但是,将这些方法应用于量子状态仍然没有探索。在这项工作中,我们使用量身定制的二分时量子量子相关性来远程准备光子时间模式状态。使用色散工程非线性光学和超快脉冲成型的浮动器工具箱,我们对自定义的时间模式进行投影测量,以对纠缠光子对的一半进行定制的时间模式,并测量其伙伴的条件谱图,如图1。我们通过实验探索PDC状态的相关时间模式结构,既有传统的时频相关性和工程性的脉冲时间模式钟形相关性。这样做,我们还证明了时间频率
尼日利亚尤林伊洛林大学工业化学系 *通讯作者。电子邮件:abioye.oluwaseyi@lmu.edu.ng doi:10.14416/j.asep.2024.09.011收到:2024年7月12日;修订:2024年8月18日;接受:2024年9月11日;在线发布:2024年9月24日©2024 King Mongkut的北曼谷大学。 保留所有权利。 抽象的Vermicomposting为堆肥提供了一种绿色替代品,可以减少温室气体的排放并改善土壤健康。 由于现有的废物管理实践,温室气体被释放到环境中。 仍然,通过将有机废物回收为一种改善土壤健康并提高农作物产量的土壤修正案,Vermicostosting为可持续的解决方案提供了可持续的解决方案。 这项研究提供了对ver虫的好处的深入概述,这种做法将有机废料恢复到一种称为vermicompost的养分丰富的土壤修正案中,可以减少温室气体的排放,改善土壤的生育能力,并通过增强作物来增强土壤结构和微生物的作用,从而促进恐惧的范围,从而使危险的变化成为浪费,以使危险的变化成为浪费,以使浪费浪费,以使成型的浪费,并促进变化,并促进变化,并促进变化,并促进浪费,并逐渐塑造,并促进变化,并逐渐塑造浪费,并促进浪费,并逐渐塑造物体,并促进危险的造型,并逐渐造成危险的变化,并将其恢复到危险的范围。保护土壤并促进农业。 此概述研究了有机废物如何降低垃圾填埋场的温室气体排放,通过改善土壤结构和生育能力来提高农作物的产量,并通过增加微生物生物多样性和养分的可用性来丰富土壤。 vermicostosting通过一些富含营养的铸件提供有机废物的降解和排毒。电子邮件:abioye.oluwaseyi@lmu.edu.ng doi:10.14416/j.asep.2024.09.011收到:2024年7月12日;修订:2024年8月18日;接受:2024年9月11日;在线发布:2024年9月24日©2024 King Mongkut的北曼谷大学。保留所有权利。抽象的Vermicomposting为堆肥提供了一种绿色替代品,可以减少温室气体的排放并改善土壤健康。由于现有的废物管理实践,温室气体被释放到环境中。仍然,通过将有机废物回收为一种改善土壤健康并提高农作物产量的土壤修正案,Vermicostosting为可持续的解决方案提供了可持续的解决方案。这项研究提供了对ver虫的好处的深入概述,这种做法将有机废料恢复到一种称为vermicompost的养分丰富的土壤修正案中,可以减少温室气体的排放,改善土壤的生育能力,并通过增强作物来增强土壤结构和微生物的作用,从而促进恐惧的范围,从而使危险的变化成为浪费,以使危险的变化成为浪费,以使浪费浪费,以使成型的浪费,并促进变化,并促进变化,并促进变化,并促进浪费,并逐渐塑造,并促进变化,并逐渐塑造浪费,并促进浪费,并逐渐塑造物体,并促进危险的造型,并逐渐造成危险的变化,并将其恢复到危险的范围。保护土壤并促进农业。此概述研究了有机废物如何降低垃圾填埋场的温室气体排放,通过改善土壤结构和生育能力来提高农作物的产量,并通过增加微生物生物多样性和养分的可用性来丰富土壤。vermicostosting通过一些富含营养的铸件提供有机废物的降解和排毒。这些铸造的潜力改善土壤健康引发了农业研究人员的兴趣。用ver虫肥料受精的作物繁荣发展,产生更高的产量,植物的养分密度显着增加。新兴研究表明,Vermicompost可以与气候变化作斗争。作为一种有机肥料,与常规肥料相比,它增强了植物和土壤隔离碳,降低温室气体的能力,减少温室气体,并减少甲烷和一氧化二氮的排放。随着更广泛的实施,Vermicostosting通过再生农业为应对气候变化的途径提供了有意义的途径。Keywords : Carbon sequestration, Environmental quality, Nutrient retention, Organic waste recycling, Soil management, Sustainable agriculture 1 Introduction Conventional agriculture has caused significant harm to society over the past few decades by overusing land and water resources, causing biodiversity loss, and erosion, and using pesticides in an uncontrolled
工业革命期间,欧洲各地的技术蓬勃发展,为成功的创新者和工业间谍带来了丰厚的回报——而这两者都不缺!这种回报的承诺为思想的相互交流提供了驱动力,产生了一系列的好处。争论不同创新的相对优点及其在工业经济发展中的作用会带来很多乐趣,但选择一种发展而放弃其他发展可能会错过协同作用。本书推迟了这种乐趣,转而关注金属技术的重要性,从钢铁开始,特别是对如何预测工程部件故障的理解。然而,在零件发生故障之前,它必须被制造出来。在黑色金属中生产有用的形状过去和现在都具有这样的特点:制造形状所需的特性与使该形状有用的特性之间存在根本冲突。形成湿粘土很容易,但制成的罐子只有在烧制后其特性才会发生变化,从而有利于性能。当熔融金属被铸造并凝固成有用的形状时,其特性也会发生类似的巨大变化;铁和钢最有用的成型和变化是在固态下制造压力容器、梁和饮料罐。有利于制造的特性和有利于性能的特性之间的相互作用是微妙的。一种很容易轧制或拉成管状的金属,不像难以成型的金属那样能抵抗日常使用中的损坏。在十九世纪初,人们对这种区别知之甚少。炼铁和炼钢过程中产生的肮脏、高温化学反应产生了质量和性能各异的金属。反过来,故障证据既常见又令人困惑。然而,早期工程师面临的最令人困惑的问题是,他们昂贵的结构由坚固、坚硬的钢制成,经常意外地断裂。一个成功的金属切割工具不应该变钝或容易碎裂,成功的大炮不应该爆裂,矿链不应该在使用中断裂;但它们却碎裂、爆裂和断裂,而且数量众多。从十九世纪初开始,花了八十年的时间才有了一套像样的工程模型和数据工具包,可以理解金属零件和结构的失效和断裂。本文将探讨这些关于工程故障的想法的发展