Ni(10 at.% Pt) 单硅化物在微电子中用作接触件,但由于团聚,在相对较低的温度下会遭受性能下降。最近在 28 nm-FDSOI 微电子器件上获得的结果显示,在与 Ni(Pt)Si 薄膜脱湿相关的 550 °C/2 小时退火后,产量损失严重。这种团聚热预算比使用原位或非原位四点探针测量在毯状晶圆上测得的热预算低 100 °C。在此背景下,本文旨在研究 Ni(Pt)Si 形成过程对 Ni(Pt)Si 团聚的影响,采用不同的方法,如 (i) 经典方法,即进行一次退火以形成硅化物并导致团聚,(ii) 通过标准 SALICIDE 工艺“自对准硅化物”形成硅化物,然后进行退火以诱导团聚,以及 (iii) 标准 SALICIDE 工艺形成硅化物,然后用 SiN 层封装顶部硅化物表面,如器件中所用,最后进行团聚退火。我们的研究表明,薄膜的热稳定性受形成过程中选择性蚀刻 (SE) 的顺序以及薄膜是通过单次退火还是双次退火形成的影响。这项研究的另一个结论是,四点探针测量不够灵敏,无法很好地估计团聚现象的真正起点,这对器件是有害的(三重结处形成孔洞)。为了准确确定团聚热预算,迫切需要一些额外的特性,例如倾斜扫描电子显微镜 (倾斜 SEM)。这项研究可以阐明导致团聚的主要参数:薄膜厚度和晶粒尺寸似乎是更重要的参数。 * 通讯作者电子邮件:magali.gregoire@st.com。
本正式销售通知本身并不构成对债券的投标邀请,而仅仅是本文所述债券的销售通知。投标邀请通过本正式销售通知、初步正式声明和随附的正式投标表格进行。本正式销售通知中包含的信息完全符合初步正式声明中包含的详细信息。正式销售通知 8,000,000 美元 特拉维斯县水利控制和改善区号。18(位于德克萨斯州特拉维斯县的德克萨斯州政治分支机构)水系统收入债券,2025 系列投标截止日期:2025 年 1 月 13 日星期一上午 10:00,CST 投标授予日期:2025 年 1 月 13 日星期一中午 12:00,CST 债券仅由特拉维斯县水资源控制和改善区承担。18 不是特拉维斯县、奥斯汀市、德克萨斯州或除该区以外的任何实体的义务。该区希望将债券指定为“合格
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系
摘要:这项研究研究了从改良的医疗线性促进剂中的电子束中的电子能量分布的散射箔材料和采样持有人的放置如何用于闪光灯放射疗法。我们分析了各个位置的电子能光谱,即离子室,镜像和下巴,以评估CU,PB-CU,PB和TA箔的影响。我们的发现表明,靠近源的距离会增强电子能量分布对箔材料的依赖性,从而通过材料选择实现精确的光束控制。蒙特卡洛模拟可有效设计箔以实现所需的能量分布。将采样支架移至远离源的较远的材料材料的影响,促进了更多均匀的能量扩展,尤其是在0.5-10 MEV范围内,以12 MEV电子束。这些见解强调了量身定制的材料选择和采样持有人定位在优化电子能量分布和闪存放射疗法研究的通量强度方面的关键作用,从而使实验设计和临床应用受益。
RTS3a:在混合跑道运行下,使用优化跑道交付(ORD)工具评估进场静态成对分离(S-PWS-A)加上使用优化分离交付(OSD)工具评估离场静态成对分离(S-PWS-D)的验证; RTS4a:在混合跑道运行下,使用优化分离交付(OSD)工具评估进场静态成对分离(S-PWS-D)的验证; RTS4b:在隔离和部分隔离跑道运行下,在使用 CSPR 的双重进近环境中,使用优化分离交付(OSD)工具评估进场静态成对分离(S-PWS-A)加上使用优化分离交付(OSD)工具评估离场静态成对分离(S-PWS-D)的验证; RTS5:验证离场静态成对分离间隔(S-PWS-D)和离场天气相关分离间隔(WDS-D),及其与隔离模式下单跑道离场优化分离交付(OSD)工具的集成(伦敦希思罗机场); RTS6:验证离场基于静态飞机特性的尾流湍流分离(S-PWS-D),及其与离场优化分离交付(OSD)工具和到达进场天气相关分离(WDS-A)的集成,及其与到达分离交付工具的集成。
在药物发现中,药物-靶标亲和力 (DTA) 被视为至关重要的一步,因为它有助于在开发过程中识别最有前途的候选药物。由于必须考虑药物和靶分子的结构和功能,以及它们复杂而非线性的相互作用,DTA 预测是一项具有挑战性的任务。本研究的目的是提出一种新颖的 DTA 预测框架,该框架利用图神经网络 (GNN) 的交叉注意网络 (CAN) 的优势。然而,使用 GNN 表示图会保留其 3D 结构信息。现有的基于注意力的方法并未充分利用它们。我们的框架使用 CAN 通过分析药物分子的不同部分如何与蛋白质的特定区域相互作用来捕获药物-靶标对的更准确表示。我们在顺序架构中使用 GIN 和 GAT 来捕获药物图分子的局部和全局结构信息。我们在两个基准数据集 Davis 和 KIBA 上评估了所提出方法的性能。其性能令人鼓舞,在均方误差 (MSE) 和一致性指数 (CI) 方面优于许多最先进的方法。具体来说,对于 Davis 数据集,我们实现了 0.222 的 MSE 和 0.901 的 CI,而对于 KIBA,我们获得了 0.144 的 MSE 和 0.883 的 CI。我们的方法提高了相互作用分析的可解释性和特异性,为药物发现过程提供了更深入的见解,并为预测的 DTA 提供了有价值的解释。我们的研究代码可在以下网址获取:https://github.com/fsonya88/CAN-DTA。
完善指导、安全案例和支持静态成对离港分离矩阵监管的材料。根据交通组合和成对矩阵中新飞机类型的纳入情况,制定(即监管和相关安全案例)基于更多类别或不同类别的精细分离最小值方法,以更适合当地机场环境。支持监管部门批准的安全证据、进一步增加效益的细化以及允许促进与可选监管推动因素相对应的部署的整合
表 1:敏感性测绘组成部分 ...................................................................................................................................... 18 表 2:滑坡测绘组成部分和覆盖范围 .............................................................................................................................. 23 表 3:成对评估摘录 ...................................................................................................................................................... 25 表 4:成对评估比较 ...................................................................................................................................................... 25 表 5:灾害分级 ............................................................................................................................................................. 29 表 6:自然灾害使用类型 ............................................................................................................................................. 34 表 7:自然灾害开发类型 ............................................................................................................................................. 35 表 8:按地方政府区和县划分的滑坡灾害规划分级面积(公顷)................................................................................ 74 表 9:面积小于 2000 平方米的空置地块................................................................................................ 77