参数 值与单位 输出功率 (P) 390 W 送粉速率 ( VF ) 174 mg/s 扫描速度 ( VS ) 5.0 mm/s 激光光束直径 ( d ) 1.0 mm Z 轴增量 ( Z ) 0.29 mm 层数 ( N ) 20 激光吸收率 0.4
扩散张量成像(DTI)是磁共振成像(MRI)的高级方式,它扩展了扩散加权成像(DWI)的能力。DWI测量水扩散信号,DTI利用来自多个扩散方向的数据来绘制大脑中水分子的三维扩散,从而使其微观结构组织的评估。源自DTI的密钥指标包括分数各向异性(FA),它反映了白质微结构的完整性;平均扩散率(MD),这表明了总水扩散的大小,并且与细胞密度和细胞外空间有关。和径向扩散率(RD),代表垂直于轴突纤维的扩散,与髓磷脂状况相关[1]。dTI已应用于神经康复领域,研究报告了基于白质分析[2-4],其效用在预测中风和创伤性脑损伤后的运动和功能恢复方面。此外,DTI已用于调查神经退行性疾病的白质变化[5-7],并提供了一种定量方法来评估细微的微结构变化,而常规MRI很难检测到这些变化[8,9]。
退火和淬火等热处理工艺对于确定金属材料的残余应力演变、微观结构变化和机械性能至关重要,残余应力在部件性能中起着更大的作用。本文研究了热处理对使用 LENS 制造的 AISI 1025 中残余应力的影响。开发并模拟了有限元模型以分析残余应力的发展。适用于熔融沉积成型 (FDM) 长丝生产中的工具和模具应用的 AISI 1025 样品是使用激光工程净成型 (LENS) 工艺制造的,然后进行热处理,即进行退火和淬火工艺。将所研究的热处理样品的材料微观结构、残余应力和硬度与原始样品进行了比较。结果表明,与原始样品相比,退火后,拉伸残余应力降低了 93%,导致裂纹扩展速率降低,尽管硬度显著降低了 25%。另一方面,淬火后记录到 425±14 MPa 的高拉伸残余应力,硬度提高了 21%。
摘要:传统的制备金属—陶瓷复合结构的方法,由于金属与陶瓷材料之间的热膨胀系数等性能差异,容易产生分层、开裂等缺陷。激光定向能量沉积(LDED)技术具有在成形过程中可以改变材料成分的独特优势,该技术可以克服成形复合结构时存在的问题。本研究利用LDED技术制备了多层复合结构,不同的材料采用各自合适的工艺参数进行沉积。先沉积一层Al 2 O 3 陶瓷,再沉积三层NbMoTa多主元合金(MPEA)作为单一复合结构单元。在φ20 mm×60 mm圆柱体上表面成形了由多个复合结构单元组成的NbMoTa–Al 2 O 3 多层复合结构试件,耐磨性较NbMoTa提高了55%。平行成形方向电阻率为1.55×10 − 5 Ω×m,垂直成形方向电阻率为1.29×10 − 7 Ω×m,成功获得了一种电各向异性的新型材料,本研究为智能材料及新型传感器的制备提供了实验方法和数据。
摘要:二元Ti-Zr同质合金因具有高结构稳定性和良好成形性而成为激光定向能量沉积的潜在候选材料。针对其强度不足的问题,基于团簇模型设计了一系列不同Mo含量的Ti-Zr-Mo合金,并利用激光定向能量沉积技术在高纯钛基体上制备了该合金。研究了Mo含量对激光定向能量沉积合金组织和性能的影响。结果表明,所有设计合金的组织均为近等轴β晶粒,无明显织构。然而,随着Mo含量的增加,晶粒逐渐细化,晶格常数逐渐减小,有效提高了设计合金的硬度、强度、耐磨性和耐腐蚀性,但略微削弱了延展性和成形性。从性能和成形质量来看,Ti 60.94 Zr 36.72 Mo 2.34(at.%)合金的力学性能、摩擦学性能、化学性能和成形性能匹配良好,广泛应用于航空发动机零部件。
各位同仁,挤压加工是目前金属及合金塑性成形的常用方法。近年来,除了改进直接/间接挤压加工方法外,新的技术也不断被提出。金属及合金挤压的成形机理,包括材料最终性能的控制与表征以及挤压加工过程中被激活的成形机理的分析,是本期特刊的研究范围。基础研究与技术创新推动挤压技术的融合,发现现有的不足,尝试突破,不断将新的研究课题和发展路径推向前沿尤为重要。本期特刊欢迎关注新型挤压技术及其对材料最终力学性能和成形性的影响的文章,包括钢材和有色合金(镁/铝/钛合金等)。
回顾这些最近的太空之旅,我们可以从历史、人类学、哲学和伦理学等学科来了解太空探索的起源、我们想要寻找什么,以及我们如何能够以合乎道德和负责任的方式组织起来进行太空探索。例如,美国宇航局喷气推进实验室 (JPL) 工程师戴安娜·特鲁希略 (Diana Trujillo) 曾参与设计了“毅力号”火星车的机械臂。她将自己描述为“可以改变历史的群体的一部分”。她提到,她希望“其他拉丁裔明白,只要有奉献精神,他们就可以成为美国宇航局重要任务的一部分”,她认为科学发现不仅对文化认同有积极影响,而且对人类也有积极影响。她认为,在“重建火星历史”的过程中,我们可以激发人们的思想,“为人类解答其他星球上的生命问题”。从这个角度理解,在应对太空探索的技术挑战时,我们不仅仅是在寻求推动技术前沿,我们还在寻求面对和理解我们自己的社会。
*1 C F RP:碳纤维增强塑料 *2 F W:纤维缠绕,缠绕涂有树脂的碳纤维并使树脂固化形成电机外壳的方法 div>
摘要:本文介绍了开发铁路车轮组轮廓成形/再成形和测量技术系统的一些想法,以提高铁路运输的维护和安全性。根据铁路运输的要求,用于重塑铁路车辆车轮和车轮组的车床正在多样化和现代化。本文介绍了通过采用 CNC 设备对具有两个工作单元的传统车床进行现代化改造的一些想法,用于同时驱动和测量轴上的两个车轮。在每个工作单元的径向滑架上,在其紧邻的位置安装有成形工具,测量系统用于确定车轮侧面内表面的轴向位置、车轮直径和滚动轮廓的主要几何参数。在重新成型之前进行测量,以确定轮廓的磨损情况,并选择重新成型和加工后的车轮直径和轮廓,以确定是否符合规格。关键词:铁路车轮组、车轮车削、铁路车轮轮廓、车轮磨损
测试样品或相机的平移。虽然使用立体 DIC 进行成形性测试具有许多优势,但商用立体 DIC 系统的高成本仍然是其广泛使用的重大障碍,特别是在需要大量投资的学术机构中。在这方面,如果有办法克服 2D DIC 测量中与平面外平移相关的误差,它将为大规模采用 DIC 进行成形性测试铺平道路。在之前的出版物 [3] 中,作者表明,如果操作正确,即使对于较大的局部应变(断裂应变),2D DIC 测量也可以与立体 DIC 测量相匹配。除此之外,作者之前还提出了一种简单的补偿方法,用于使用单相机 DIC 系统从 Marciniak 测试中获得准确可靠的平面内 FLC [4]。他们的方法不适用于平面外 Nakazima 测试,该测试在金属板材成形行业中被广泛采用且更受欢迎。这项工作解决了这一差距,并提出了一种与材料无关、简单且易于实施的 2D DIC 应变补偿方法,用于确定非平面 Nakazima 球冲试验中的 FLC。