摘要简介与心理健康相关的急诊室(ED)的负担正在增长,并且随着这种访问的态度,煽动发作很普遍。专家提供的最佳实践指南建议使用降级技术来尽早评估处于风险的人群和先发制人的干预措施,以防止搅动。时间压力,波动的工作需求以及其他与系统相关的因素在不断发展的行为危机期间提出了有效决策和采用最佳实践建议的挑战。因此,我们建议设计,开发和评估计算机化的临床决策支持(CDS)系统,早期检测和治疗,以减少搅拌工具(ED- TREADS)的事件。我们旨在通过适当的风险评估和及时的干预措施来确定有煽动风险的患者,并指导ED临床医生,以最大程度地减少约束使用并改善患者经验和结果的目标,以防止躁动。方法和分析本研究描述了嵌入的CDS工具的健康记录的形成性评估。在AIM 1下,该研究将收集定性数据,以使用上下文设计方法和以用户为中心的设计过程来设计和开发ED-TREAT。参与者将包括潜在的CDS使用者,即ED医生,护士,技术人员以及在ED访问期间具有限制性使用行为危机管理经验的患者。我们将使用有目的的抽样来确保整个视角,直到我们达到主题饱和。我们的目标是在试点试验下招募至少26名合格受试者。接下来,在AIM 2下,该研究将在美国东北部区域卫生系统的两个成人ED地点进行试验,随机对照试验,以评估ED-TREAT的可行性,保真度和床边的可接受性。在2021年获得了耶鲁大学人类调查委员会的道德和传播伦理批准(HIC#2000030893和2000030906)。所有参与者将在入学之前提供知情的口头同意。将通过开放访问,经过同行评审的期刊,科学演示或直接电子邮件通知中的出版物传播结果。试用注册号NCT04959279;预兆。
本研究通过学术定义的类型学,探讨了新闻业中生成性人工智能的多面性。生成性人工智能是指在新闻领域使用人工智能技术来创建、制作和生成内容、见解和数据。通过分析现有文献中的不同观点,本研究旨在全面了解生成性人工智能在新闻业中的概念化和应用方式。类型学揭示了四个关键维度:内容生成、数据分析和见解、新闻编辑室自动化和受众参与。通过对这些类型进行分类和研究,本研究深入探讨了生成性人工智能在新闻业中的具体应用、含义和影响。研究结果促进了关于生成性人工智能的持续讨论,为研究人员、从业者和政策制定者提供了宝贵的见解,帮助他们在不断发展的媒体环境中充分利用人工智能的潜力,同时坚持新闻业的原则。关键词:生成性人工智能、新闻业、自然语言处理、专家系统、语音转文本、机器学习、粒子群算法、视觉、机器人技术
旅程并评估自己是否了解了他们所教的内容,并能够应用和使用他们所学的技能和知识。有两种评估形式;形成性和总结性。形成性评估为我们的员工提供了一个机会,可以在学习过程中向学生提供反馈。此反馈旨在帮助和指导学生学习。所有模块都将以各种形式进行一些形成性评估。如果学生要充分利用学习经验,并且旨在为学生做好准备的总结评估,那么这些形成性活动很重要。总结性评估是我们如何在模块上对工作进行评分,并且该评估的详细信息将从模块的开头获得,以便学生了解如何确定其成绩。
ldoe形成性评估资源,以支持课堂上的形成性评估,该部门发布了与路易斯安那州科学学生标准相关的离散项目和项目集库。这些项目以及2025年的LEAP练习测试项目可以与高质量课程的指导一起使用,作为学生证明自己学到的知识的机会。ldoe形成性评估资源可以在K-12科学资源网页上找到。
作为律师事务所的合伙人,您可以通过整合Genai工具来探讨提高法律服务效率的可能性。您组织了有关Genai相关技术创新的常规团队会议。在其中一项教育活动中,同事建议使用Chatgpt为客户准备法律文件的摘要 - 复杂的合同,备忘录等。在制定了这种想法的方法时,您得出结论,在将工具用于客户相关的任务之前,您将出于内部目的进行测试 - 简化您的网站文章或起草新闻通讯。在访问工具之前,您可以设置明确的规则,并确保在有效的及时写作中对团队进行培训。通过人类分析验证了所有输出,并且定期审查该工具的影响 - 您可能想跟踪节省时间,结果的准确性以及在结果改进上所花费的时间。
计算技术在工作中的越来越多的集成也看到了数据驱动和算法工具的概念化和开发,旨在改善工人的健康和绩效。但是,研究和实践都揭示了这些工具的有效性和部署的几个差距。与此同时,生成AI的最新进展高高了大型语言模型(LLMS)在处理人类相互作用的自然语言内容方面的巨大功能。本文探讨了LLMS促进以工人为中心的福利评估工具(WATS)的机会。特别是,我们将LLM的特征映射到已知的WAT挑战。我们强调了LLM如何桥接甚至扩大工人中心WAT中的差距。本文旨在激发新的研究方向,重点是赋予工作人员能力并预期将LLM与工作场所技术融合在一起的危害。
摘要 —生成性学习策略与认知和情感相联系。基于单因素实验设计,75 名被试被随机分配到化学虚拟现实 (VR) 课程,在三种条件下学习:VR、VR+总结和VR+自我测试。使用 emWave 系统记录学习者在学习过程中的情绪状态。使用保留测试测量学习者的学习成果,使用工具测量学习体验。结果表明,与没有生成性学习策略的 VR 课程学生相比,1)在学习过程中进行生成性自我测试策略的学生在认知过程中表现出更多积极情绪,学习后积极评价更多,记忆测试分数更高;2)在学习过程中进行生成性总结策略的学生在认知过程中表现出更多积极情绪,但即时记忆分数较低。这些发现为解释生成性总结和自我测试学习策略如何影响基于 VR 的学习提供了新的证据。
通过提高人们更高效、更有效地完成工作的能力,生成性人工智能有可能补充生产力和长期 GDP 增长。这对美国来说是个好消息,因为美国面临着出生率下降、婴儿潮一代退休和去全球化等劳动力市场的阻力。因此,我们认为,在未来几十年,发展中国家很可能会因人工智能推动的生产力增长而经历比前二十年更强劲的增长。虽然仍有许多未知数,但生成性人工智能的投资意义在于更高的增长,这通常伴随着风险资产的更高估值。预计到 2030 年,全球生成性人工智能市场将达到 1.8 万亿美元。咨询公司麦肯锡估计,通过提高生产力,生成性人工智能每年可以为全球经济增加 4.4 万亿美元的价值。