对嘈杂的中型量子设备进行采样是一个基本步骤,它将相干量子电路输出转换为测量数据,以运行在成本函数优化任务中使用梯度和 Hessian 方法的变分量子算法。然而,这一步骤会在生成的梯度或 Hessian 计算中引入估计误差。为了尽量减少这些误差,我们讨论了可调数值估计器,即有限差分(包括它们的广义版本)和缩放参数移位估计器 [在 Phys. Rev. A 103, 012405 (2021) 中介绍],并提出了操作电路平均方法来优化它们。我们表明,对于给定的采样副本数,这些优化的数值估计器的估计误差会随着电路量子比特数的增加而呈指数下降,从而揭示出与荒原现象的直接兼容性。具体来说,存在一个临界采样拷贝数,低于该临界数,优化的差异估计器会给出比标准(解析)参数移位估计器更小的平均估计误差,后者精确计算梯度和 Hessian 分量。此外,这个临界数会随着电路量子比特数的增加而呈指数增长。最后,通过放弃解析性,我们证明了缩放的参数移位估计器在任何情况下的估计精度都优于标准的非缩放估计器,在显著的拷贝数范围内具有与差异估计器相当的性能,并且如果可以承受更大的拷贝数,它们是最好的。
摘要。在决策系统中,算法追索权旨在确定最小成本的动作以改变个人的特征,从而获得预期的结果。这使个人有能力理解,质疑或改变对他们产生负面影响的决定。但是,由于系统环境和个人的敏感性以及量化单个功能的成本几乎是不可能的,同时考虑了多种标准情况。大多数当前的追索性机制都使用基于梯度的方法,这些方法假设成本函数是可区分的,通常不适用于现实世界中的情况,从而产生了损害各种标准的亚最佳解决方案。这些解决方案通常是棘手的,并且缺乏严格的理论基础,从而从可解释的AI(XAI)角度引起了人们对解释性,可靠性和透明度的关注。为了解决这些问题,这项工作提出了一个算法的求程框架,该框架处理了非不同和离散的多成本功能。通过将追索权作为多目标优化问题制定,并根据其重要性将权重分配给不同的会议室,我们的方法确定了帕累托最佳追索权建议。为了证明可伸缩性,我们结合了ϵ -NET的概念,证明了找到近似帕累托最佳作用的能力。实验显示了不同迹象和该方法在大图中的可扩展性之间的权衡。与当前的启发式实践相比,我们的方法提供了更强的理论基础,并更好地将追索权与现实世界的要求保持一致。
摘要 基于测量的量子计算 (MBQC) 是一种很有前途的方法,可以减少嘈杂的中型量子算法(例如变分量子特征值求解器 (VQE))中的电路深度。与基于门的计算不同,MBQC 在预先准备的资源状态上使用局部测量,在电路深度和量子比特数之间提供权衡。确保确定性对 MBQC 至关重要,特别是在 VQE 环境中,因为测量模式缺乏流动性会导致在无关位置评估成本函数。本研究介绍了尊重确定性并类似于广泛使用的与问题无关的硬件高效 VQE 假设的 MBVQE 假设。我们使用 Schwinger Hamiltonian 和 XY 模型上的理想模拟来评估我们的方法,并在具有自适应测量功能的 IBM 硬件上进行实验。在我们的用例中,我们发现通过后选择确保确定性比通过自适应测量效果更好,但会增加采样成本。此外,我们提出了一种有效的 MBQC 启发式方法,用于在具有重十六进制连接的硬件上准备资源状态,特别是集群状态,需要单轮测量,并在具有 27 和 127 个量子比特的量子计算机上实现此方案。我们观察到较大集群状态的显着改进,尽管直接基于门的实现对于较小的实例实现了更高的保真度。
鉴于不断增长的需求和有限的财政资源,新兴经济体的电力行业在提供价格合理、环境可持续和安全的电力方面面临着特殊挑战。虽然供电可靠性通常很差,减排的优先级较低,但太阳能和风能现在是我们最便宜的供电选择之一,但变化很大。我们的研究旨在证明在未来发电规划中,在可靠性标准与更高的可再生能源和更低的行业成本之间进行权衡的潜在价值。我们使用基于开源进化编程的容量扩展规划工具 NEMO 来解决 2030 年印度尼西亚爪哇-巴厘岛电网的最低成本发电组合。我们明确测试了 0.005% e 5% 未服务能源 (USE) 的可靠性目标对成本和排放的影响,在成本函数中将其建模为硬优化约束和对 USE 的惩罚价格。我们的结果表明,降低可靠性目标可以增加太阳能和风能的渗透率,减少二氧化碳排放,同时降低行业成本。两种纳入可靠性的方法都产生了类似的结果,但定价 USE 在优化方面比硬约束设置有一些优势。虽然可靠性降低对消费者的影响需要仔细考虑,但我们的研究强调了新兴经济体发电规划中可能不切实际的可靠性目标对成本和排放造成的潜在影响。© 2021 Elsevier Ltd. 保留所有权利。
变异量子算法(VQA)被认为是嘈杂的中间尺度量子(NISQ)设备的有用应用。通常,在VQA中,参数化的ANSATZ电路用于生成试验波函数,并且对参数进行了优化以最大程度地减少成本函数。另一方面,已经研究了盲量量计算(BQC),以便通过使用云网络为量子算法提供安全性。执行量子操作能力有限的客户端希望能够访问服务器的量子计算机,并且BQC允许客户端使用服务器的计算机,而不会泄漏客户端的信息(例如输入,运行量子算法和输出)到服务器。但是,BQC设计用于容差量子计算,这需要许多辅助量子位,这可能不适合NISQ设备。在这里,我们提出了一种有效的方法,可以为客户端提供保证安全性的NISQ计算。在我们的体系结构中,仅需要N +1量子位,假设服务器已知Ansatzes的形式,其中N表示原始NISQ算法中必要的量子数。客户端仅在从服务器发送的辅助量子位上执行单量测量,并且测量角可以指定NISQ算法的ANSATZES的参数。无信号原则可以保证客户端选择的参数或算法的输出都不会泄漏到服务器。这项工作为NISQ设备的新应用程序铺平了道路。
摘要:近几十年来,脑机接口 (BCI) 已成为研究的前沿领域。特征选择对于降低数据集的维度、提高计算效率和增强 BCI 的性能至关重要。使用与活动相关的特征可以在所需任务中获得较高的分类率。本研究提出了一种基于包装器的元启发式特征选择框架,用于使用功能性近红外光谱 (fNIRS) 的 BCI 应用。在这里,从所有可用通道计算时间统计特征(即平均值、斜率、最大值、偏度和峰度)以形成训练向量。使用基于 k 最近邻的成本函数测试了七种元启发式优化算法的分类性能:粒子群优化、布谷鸟搜索优化、萤火虫算法、蝙蝠算法、花授粉优化、鲸鱼优化和灰狼优化 (GWO)。基于来自 29 名健康受试者的运动想象 (MI) 和心算 (MA) 任务的在线数据集,对所提出的方法进行了验证。结果表明,与从全套特征中获得的特征相比,利用从元启发式优化算法中选择的特征可以显著提高分类准确率。所有上述元启发式算法都提高了分类准确率并减小了特征向量大小。GWO 对 MA、MI 和四类(左手和右手 MI、MA 和基线)任务的平均分类率最高(p < 0.01),分别为 94.83 ± 5.5%、92.57 ± 6.9% 和 85.66 ± 7.3%。所提出的框架可能有助于在训练阶段为基于 fNIRS 的稳健 BCI 应用选择合适的特征。
抽象的许多具有挑战性的调度,计划和资源分配问题与现实世界输入数据和硬性问题约束有关,并减少了优化成本函数,而不是由综合定义的可行集合(例如图形的颜色)。使用量子近似优化算法来解决量子计算机解决此类问题,我们提出了新型有效的量子交替运算符ANSATZ(QAOA)构造,以优化对和弦图的适当色素的优化问题。作为我们的主要应用程序,我们考虑了飞行门分配问题,其中将航班分配到机场大门以最大程度地减少所有乘客的总运输时间,并且可行的分配对应于从输入数据中派生的冲突图的适当图形颜色。我们利用经典算法和图形理论的想法来表明我们的构造具有将量子状态进化限制为可行子空间的理想特性,并满足了大多数问题参数制度的特定可及性条件。使用经典预处理我们表明,我们可以有效地找到并构建合适的初始量子(叠加)状态。我们详细介绍了我们的构造,包括对一组通用的基本量子门的明确分解,我们用来将所需资源缩放限制为输入参数的低度多项式。尤其是我们得出了新颖的QAOA混合操作员,并表明他们的实施成本与QAOA阶段运算符的飞行门分配相称。包括许多量子电路图,以便我们的构造可以用作开发和实施量子栅极模型方法的模板,以提供多种潜在影响的现实世界应用。
SCS5107 计算智能 计算智能:计算智能 (CI) 是一套受自然启发的计算方法和方法,用于解决现实世界应用中的复杂问题,而传统方法和方法对此无效或不可行。它主要包括模糊逻辑系统、神经网络和进化计算。此外,CI 还包含源自上述三种技术或围绕其中一种或多种技术的技术,例如群体智能和人工免疫系统,它们可以看作是进化计算的一部分。进化计算在计算机科学中,进化计算是人工智能(更具体地说是计算智能)的一个子领域,涉及组合优化问题。进化技术主要涉及元启发式优化算法,例如:进化算法(包括遗传算法、进化规划、进化策略和遗传规划)群体智能(包括蚁群优化和粒子群优化,以及较小程度的人工免疫系统、文化算法、差异进化、和谐搜索算法等。在人工智能中,进化算法 (EA) 是进化计算的一个子集,是一种基于种群的通用元启发式优化算法。EA 使用一些受生物进化启发的机制:繁殖、突变、重组和选择。优化问题的候选解决方案扮演着种群中个体的角色,适应度函数决定了解决方案“生存”的环境(另见成本函数)。在重复应用上述运算符后,种群就会进化。群体智能在计算智能领域有两种流行的群体启发方法:- 蚁群优化 (ACO)
摘要:模型预测控制(MPC)中的调整参数提出了重大挑战,尤其是当控制器的预测与闭环工厂的实际行为之间存在明显差异时。这种不匹配可能源于诸如实质性模型植物差异,不涵盖整个关注时间的预测范围有限或无法预见的系统干扰等因素。这种不匹配会危害性能和安全性,包括限制满意度。传统方法通过修改有限的地平线成本函数来解决此问题,以更好地反映总体运营成本,从数据中学习预测模型的部分或实施强大的MPC策略,这些策略可能是计算密集型或过于谨慎的。作为替代方案,已经提出了直接优化或学习控制器参数以增强闭环性能。我们将贝叶斯优化应用于有效学习未知模型参数和参数化约束词语项,旨在提高电池快速充电的闭环性能。这种方法建立了一个层次控制框架,其中贝叶斯优化直接对全球和长期目标进行微调闭环行为,而MPC则处理较低级别的短期控制任务。对于锂离子电池快速充电,我们表明学习方法不仅可以确保安全操作,而且还可以最大程度地提高闭环性能。这包括将电池的操作保持在其最大端子电压下方,并减少充电时间,所有这些都使用标准的标称MPC模型以短层和显着的初始模型植物不匹配而实现。
摘要 - 可构造的对象操纵是一个充满挑战的研究主题,它引起了对机器人领域的日益兴趣,因为已经出现了解决此问题的新方法。到目前为止,文献中的大多数提出的方法都集中在形状控制上。被忽略了应用于物体的应变,因此排除了操纵脆弱产品的大部分工业应用,例如橡胶和塑料物体的脱胚层或食物的处理。这些应用需要在准确性和仔细操纵之间进行权衡,以保留操纵对象。在本文中,我们提出了一种方法来最佳控制线性和平面变形对象的变形,同时还最大程度地减少对象的变形能。首先,我们修改了最初为线性软机器人控制开发的框架,以使其适应可变形的物体机器人操作。为此,我们将问题重新制定为一个优化问题,其中考虑对象的整体形状,而不是仅专注于对象的位置和方向的尖端。然后,我们在成本函数中包含一个能量项,以找到在达到所需形状的同时最小化操纵物体中潜在的弹性能量的解决方案。对于高非线性问题的解决方案众所周知,很难找到对局部最小值的敏感性。我们定义了连接对象的已知初始和最终配置并顺序解决问题的中间最佳步骤,从而增强了算法的鲁棒性并确保解决方案的最佳性。然后使用中间最佳配置来定义机器人的终端效果轨迹,以使对象从初始配置变形为所需的配置。索引术语 - 可通知的对象操纵,机器人技术,形状控制,优化,轨迹生成