摘要 — 为了实现长期自主导航中稳健、无漂移的姿态估计,我们在本文中提出了一种将全局位置信息与视觉和惯性测量融合在一起的方法,该方法是基于紧耦合非线性优化的估计器。与以前的松散耦合研究不同,使用紧耦合方法可以利用所有测量之间的相关性。通过最小化包括视觉重新投影误差、相对惯性误差和全局位置残差的成本函数来估计最新系统状态的滑动窗口。我们使用 IMU 预积分来制定惯性残差,并利用这种算法的结果来有效地计算全局位置残差。实验结果表明,所提出的方法实现了准确且全局一致的估计,优化计算成本的增加可以忽略不计。我们的方法始终优于松耦合融合方法。与室外无人机 (UAV) 飞行中的松耦合方法相比,平均位置误差降低了 50%,其中全局位置信息由嘈杂的 GPS 测量提供。据我们所知,这是第一项在基于优化的视觉惯性里程计算法中紧密融合全局位置测量的工作,利用 IMU 预积分方法定义全局位置因子。
我们为固定电池系统提出了一种多尺度模型预测控制 (MPC) 框架,该框架利用高保真模型来权衡能源和频率调节 (FR) 市场提供的短期经济激励与长期退化效应。我们发现 MPC 框架可以大幅减少长期退化,同时正确响应 FR 和能源市场信号(与使用低保真模型的 MPC 公式相比)。我们的结果还证明,可以使用现代非线性规划求解器将复杂的电池模型嵌入闭环 MPC 模拟中(我们在 Julia 中提供了一个高效且易于使用的实现)。我们利用从模拟中获得的见解来设计一个低复杂度的 MPC 公式,该公式与使用高保真模型获得的行为相匹配。这是通过设计一个合适的终端惩罚项来实现的,该惩罚项隐式地捕获长期退化。结果表明,通过正确设计成本函数,可以在低复杂度 MPC 公式中解释复杂的退化行为。我们相信,我们的概念验证结果具有工业意义,因为电池供应商正在寻求参与快速变化的电力市场,同时保持资产完整性。
摘要 — 双态天线大规模平面阵列的设计有助于在最小化旁瓣电平 (SLL) 和控制第一零波束宽度 (FNBW) 变化的约束下使用遗传算法来降低能耗。通常,平面阵列用于基于电池使用的通信应用,例如便携式雷达。本文使用实数编码遗传算法 (RCGA) 优化了具有 1600 个相同天线元件的均匀矩形阵列 (URA)。执行优化过程是因为以 ON-OFF 状态的形式找到辐射元件电流激励权重的最佳集合以节省消耗的功率。因此,选择了阵列因子 (AF) 的最高性能和所需的波束宽度。本文提出的主要贡献是能够使用 RCGA 算法通过将阵列划分为阵列子集来优化大量阵列元素。执行模拟结果以验证遗传稀疏 URA 的有效性。通过选择能够高效加扰的天线元件,相当于节省了 24.4% 的能耗。本文使用 MATLAB CAD Ver. 2018a 作为平台获得了结果。索引术语 —RCGA、节能、规划器阵列、成本函数、双态天线。
简介:人们越来越有兴趣开发使用扩散 MRI 纤维束成像分析活体整个人脑结构连接的方法和模型。这些分析依赖于连接组重建的稳健性和生物学准确性;不幸的是,许多方法因素都会影响这种重建(以及任何衍生的测量值),甚至包括播种策略 [1] 。部分原因是在流线纤维束成像中,轨迹是彼此独立生成的,因此大脑中的特定通路可能相对于底层生物学被过度定义或定义不足。在这里,我们提出了一种全脑纤维追踪数据的后处理滤波器,以补偿这种方法偏差。方法:Raffelt 等人 [2] 的模拟结果表明,使用球面反卷积产生的纤维取向分布 (FOD) 中每个峰的幅度与与该峰对齐的体素内轴突的细胞内体积分数成正比。因此,如果全脑纤维追踪的结果是对底层神经元轴突结构的完美重建,则高角度分辨率空间中的轨迹密度应与 FOD 峰值的方向和相对幅度相对应。因此,我们可以构建一个简单的成本函数:
量子密码系统的密码分析通常涉及寻找针对底层协议的最佳对抗攻击策略。量子攻击建模的核心原则通常归结为对手克隆未知量子态并由此提取有意义的秘密信息的能力。由于电路深度较大或在许多情况下未知,显式最佳攻击策略通常需要大量计算资源。在这里,我们介绍了变分量子克隆 (VarQlone),这是一种基于量子机器学习的密码分析算法,它允许对手使用混合经典量子技术训练的短深度量子电路获得最佳近似克隆策略。该算法包含具有理论保证的具有操作意义的成本函数、量子电路结构学习和基于梯度下降的优化。我们的方法能够端到端发现硬件高效的量子电路来克隆特定的量子态系列,我们在 Rigetti Aspen 量子硬件上的实现中展示了这一点。我们将这些结果与量子密码原语联系起来,并推导出由 VarQlone 促进的显式攻击。我们期望量子机器学习将成为改进当前和未来量子加密协议攻击的资源。
具有数百个量子比特的量子计算机即将面世。不幸的是,高设备错误率对使用这些近期的量子系统为实际应用提供支持构成了重大挑战。在现有量子系统上执行程序会产生正确和错误的结果,但输出分布通常太嘈杂而无法区分它们。在本文中,我们表明错误结果不是任意的,而是在汉明空间中表示时表现出明确定义的结构。我们在 IBM 和 Google 量子计算机上的实验表明,最常见的错误结果在汉明空间中更有可能接近正确结果。我们利用这种行为来提高推断正确结果的能力。我们提出了汉明重构 (HAMMER),这是一种后处理技术,它利用对汉明行为的观察来重建嘈杂的输出分布,从而使得到的分布具有更高的保真度。我们使用来自 Google 和 IBM 量子计算机的实验数据(这些计算机拥有 500 多个独特的量子电路)评估 HAMMER,并将解决方案质量平均提高了 1.37 倍。在 Google 公开的 QAOA 数据集上,我们表明 HAMMER 可以锐化成本函数景观上的梯度。
在量子计算中,估计量子数据之间的差异至关重要。然而,作为量子数据相似性的典型特征,迹线距离和量子保真度通常被认为难以评估。在这项工作中,我们引入了这两种距离测量的混合量子-经典算法,适用于不需要假设输入状态的近期量子设备。首先,我们介绍了变分迹线距离估计 (VTDE) 算法。我们特别提供了通过局部测量提取任何 Hermitian 矩阵的所需频谱信息的技术。然后,在单个辅助量子位的帮助下,从该技术推导出一种用于迹线距离估计的新型变分算法。值得注意的是,由于局部成本函数,VTDE 可以避免对数深度电路的贫瘠高原问题。其次,我们介绍了变分保真度估计 (VFE) 算法。我们结合乌尔曼定理和净化自由度,将估计任务转化为辅助系统上具有固定净化输入的单元优化问题。然后,我们提供了一个净化子程序来完成转换。这两种算法都通过数值模拟和实验实现进行了验证,对于随机生成的混合状态表现出很高的准确性。
C pump g,t 时间间隔t内单位g的泵负荷的投标价格[$/MW]。变量[单位]:er,t 时刻t水库r中存储的能量[MWh];umg,t 二元变量,时间间隔t内配置m的单位g的承诺变量[NA];ur mr,t 连续变量,若ur mr,t = 1,则表示时间间隔t内水库r处于模式m∈{发电,泵}的状态[NA];vm,ng,t 二元变量,时间间隔t内PSHU g的配置m和配置n之间的过渡变量[NA];q gen g,t 连续变量,时间间隔t内PSHU g的发电量[MW];q pump g,t 连续变量,时间间隔t内PSHU g的泵送负荷量[MW];qg,t 连续变量,时间间隔t内单位g的发电量[MW]。辅助变量[单位]:f gen g,t 连续变量,时间间隔 t 期间 PSHU g 提供的发电机配置的能源机会成本[$/小时];C(qg,t) 发电机组 g 的成本函数[$/小时]。
强化学习(RL)在建筑物控制方面发挥了巨大的潜力,以使建筑物的运作更加节能。已经研究了各种RL算法的建筑控件性能,因此在整个功能范围内对这些算法进行基准测试对于提供概述并加深对RL应用程序的理解至关重要。因此,本研究旨在比较和分析各种RL算法的有效性,其中包括基于价值的,策略梯度,参与者 - 批评和基于模型的RL考虑模型可用性和策略表示的整个RL类别。还研究了根据RL的成本函数量化累积奖励的控制绩效,研究了超参数调整的稳定性。开源的健身房ePlus框架被选为训练和测试不同RL代理的虚拟环境。结果表明,在能耗和热舒适性方面,无模型和基于模型的RL代理都超过了基线规则的控制,并且RL代理能够评估短期和长期奖励,以连续地与在线控制过程中连续实现适应性控制优化。基于模型的RL代理提高了数据采样效率,但在经过测试的夏季表现出了相对牺牲的控制性能。
搜索近期量子设备的应用是广泛的。量子机学习被吹捧为对此类设备的潜在利用,尤其是那些无法触及的古典计算机模拟功能的设备。在这项工作中,我们研究了这种应用在生成建模中,重点是一类称为出生机器的量子电路。特别是,我们基于Ising Hamiltonians定义了该类别的子集,并表明在最坏情况下,在基于梯度的训练中遇到的电路无法从经典到乘法误差进行有效地采样。我们的基于梯度的培训方法使用成本功能,称为sindhorn差异和Stein差异,这些差异以前尚未用于基于量子电路的梯度培训,我们还将量子内核引入生成性建模。我们表明,这些方法的表现优于先前的标准方法,该方法使用最大平均差异(MMD)作为成本函数,并以最小的开销来实现这一目标。最后,我们讨论了模型学习硬分布并为“量子学习至高无上”提供正式定义的能力。我们还通过使用生成建模来执行量子电路汇编来体现本文的工作。