副标题 D—空军计划第131.最低作战中队水平。第132.轰炸机部队结构目标的修改。第133.最低轰炸机部队水平。第134.战术空运飞机所需的最低库存。第135.空中加油机的库存要求。第136.授权使用 F-35A 战斗机 AT-1 至 AT-6。第137.F-35 飞机枪炮系统弹药。第138.延长 RC-135 飞机退役资金可用性限制。第139.修改 U-2 和 RQ-4 飞机退役限制。第140.修改 E-8 JSTARS 飞机退役资金可用性限制。第141.限制在欧洲战区内撤资 F-15C 飞机。第142.机载情报、监视和侦察的现代化计划。第143.RC-26B 载人情报、监视和侦察飞机。第144.禁止为近距离空中支援整合组提供资金。第145.需要解决 KC-46 飞机远程视觉系统限制问题。第146.移动目标指示器需求和先进战斗管理系统能力分析。秒。147.研究评估关键任务领域成本效果的措施。
Triboelectric纳米生成器(Tengs)在为各种可穿戴设备获得可持续能源方面起着至关重要的作用。聚合物材料是量的重要组成部分。生物聚合物是适合Tengs的材料,因为它们具有降解性,自然采购和成本效果。在此,总结了常用生物聚合物和精心设计的仿生技术的最新进展。详细概述了天然橡胶,多糖,基于蛋白质的生物聚合物和其他常见的合成生物聚合物在Teng技术中的应用。根据其电力能力,极性变化和特定功能,讨论了每个生物聚合物的活性和功能层。还总结了特定生物聚合物的重要仿生策略和相关应用,以指导Teng的结构和功能设计。将来,对摩擦性生物聚合物的研究可能会着重于探索替代候选者,增强电荷密度和扩大功能。在本综述中提出了基于生物聚合物的tengs的各种可能应用。通过将生物聚合物和相关的仿生方法应用于Teng设备,Teng在医疗保健领域的应用,环境监测以及可穿戴/可植入的电子设备可以进一步促进。
对具有可自定义敏感性的可拉伸应变传感器的需求在各种应用中都增加了,从人体运动检测到植物生长监测。尽管如此,在数字制造可扩展和成本效果的应变传感器的数字制造中仍然存在一个重大挑战,对各种需求的敏感性量身定制。当前,缺乏简单的数字制造方法,能够以受控方式调节应变灵敏度,而不会改变材料,也不会影响线性。在这项研究中,可以在所有基于所有激光器的制造过程中系统地调节应变灵敏度的平行微型应变传感器,而无需提出任何材料替代。该技术采用了两步直接的激光写作方法,结合了激光消融和激光标记的能力,具有多达433%的不同量学系数(GF = 168),同时为纳米机制应变传感器的大规模生产铺平了道路。平行微型物质的应变传感器在超低菌株(ɛ= 0.001)时表现出显着的信噪比,使它们非常适合监测植物的逐渐生长。作为应用示范,将提出的传感器部署在番茄植物上,以在不同的种植条件(包括水培和土壤培养基以及多样化的灌溉方案)中捕获其生长。
水纯阳离子的工业化实践越来越多地整合了膜技术后主要处理,大大扩展了一系列可降低的污染物,并提出了一种平衡能源效率与成本效果的纯化方法。是区分聚合物膜的功能,尽管生物污染的问题引起了重要的挑战,无法进行操作挑战,减少膜寿命,需要重复进行UX维护,并加剧了明显的ux live live,呼吁对复杂的多阶段Puri puri puri purication阳离子策略。 2具有反双重特征的工程膜对于利用其全部潜力至关重要。 聚合物膜技术的最新进展产生了能够天生抵抗微生物威胁的膜。 3是区分聚合物膜的功能,尽管生物污染的问题引起了重要的挑战,无法进行操作挑战,减少膜寿命,需要重复进行UX维护,并加剧了明显的ux live live,呼吁对复杂的多阶段Puri puri puri purication阳离子策略。2具有反双重特征的工程膜对于利用其全部潜力至关重要。聚合物膜技术的最新进展产生了能够天生抵抗微生物威胁的膜。3
氢是一种干净且环保的能量向量,可以在满足世界未来能源需求方面发挥重要作用。因此,对太阳能产生氢生产的潜力的全面研究可以极大地促进过渡到氢经济的过渡。因为通过了解太阳能生产的确切潜力,因此可以将其生产的成本效果与其他氢生产方法进行比较。考虑到上述内容,可以看出,到目前为止,还没有进行全面的研究,以确定伊朗不同站点的太阳能生产的确切潜力并找到了最合适的站点。因此,在目前的工作中,在第一次使用荷马和Arcgis软件,进行了家庭规模的太阳能氢生产的技术 - 经济研究。的结果表明,缩影站的能源级别等于0.172美元,每年生产83.8千克氢是最好的车站和达拉布站,其水平的能源成本等于$ 0.286,并且每年生产50.4 kg氢的生产是最差的车站。根据结果,其他合适的站点是Bushehr和Deyr,其他不合适的站点是Anzali和Khalkhal。此外,在102个研究站中,每年生产380兆瓦的太阳能电力,相当于70.2吨氢。本文的作者希望本工作的结果将帮助能源决策者创建战略框架和在伊朗生产太阳能氢的路线图。基于地理信息系统图,很明显,伊朗的南部,尤其是波斯湾和阿曼海的海岸,适合氢生产,以及北部,东北部,西北部,伊朗南部的一个地区不适合氢生产。
机器人超材料代表了一种创新的方法,用于创建合成结构,将所需的材料特征与具体的智能结合在一起,模糊了材料和机械之间的边界。受到生物皮肤功能质量的启发,将触觉智能整合到这些材料中引起了研究和实际应用的重要兴趣。这项研究介绍了具有全向适应性和出色触觉感应的软机器人超材料(SRM)设计,结合了基于视觉的运动跟踪和机器学习。研究将两种感官整合方法与最先进的运动跟踪系统和力/扭矩传感器基线进行比较:具有高框架速率的内部视觉设计和外部视觉设计的成本效果。结果表明,内部视觉SRM设计达到了98.96%的令人印象深刻的触觉精度,实现了柔软和适应性的触觉相互作用,尤其对灵活的机器人抓握有益。外部视觉设计以降低的成本进行类似的性能,并且可以适应可移植性,从而增强材料科学教育和机器人学习。这项研究显着地使用了软机器人超材料中的基于视觉运动跟踪的触觉传感,以及GitHub上的开源可用性促进了协作并进一步探索了这种创新技术(https:// github .com /github .com /bionicicdl -sustech /sustech /softrobotictongs)。
寻找化石燃料的绿色替代品可刺激光伏场中的搜索。硅是建造太阳能电池的最常用材料,这主要是因为其成本效果,但吸收光谱有限(尤其是在蓝色和紫外线区域),这是相对较低的冲击式标题极限(30%)。此外,硅太阳能电池的温度系数相当高,这意味着它们的效率随温度升高显示可测量的下降。多函数太阳能电池达到高达47%[1]的效率,但是很难构建,并且非常昂贵。氮化盐是一种有前途的材料,用于吸收多结太阳能电池中的高能光子或Si-GAN串联细胞中的高能光子[2],具有多个量子井(MQW)结构,显示出最佳性能[3]。MQW细胞在简单的P-N或P-I-N结构结构上显示出各种优势,这主要是由于可以在不存在的位错和相位分离问题的情况下生长较薄的Ingan层,这是GAN上生长的厚Ingan层的典型情况[4]。Ingan-GAN MQW结构已被证明在恶劣的环境中,在高激发密度和高温下[5,6]中也是可靠的[5,6],从而可以在无线电源传输系统和空间应用中使用[7]。这项工作的目的是了解在高温下将基于MQW INGAN的太阳能电池提交给高功率光和电应力时如何降解。
近年来,人工智能将人工智能整合到医疗保健中,DeepSeek成为提高临床决策和医院运营效率的领先解决方案[1]。自2025年1月以来,该技术在中国第三纪念医院的广泛采用表示医疗人工智能(AI)应用的范式转移。上海在开拓DeepSeek的实施方面发挥了关键作用,领先的医院利用该技术用于不同的应用[2]。fudan大学附属的华山医院是最早在多个平台上测试DeepSeek 70B及其完整模型的医院之一,可确保在Intranet环境中维持数据安全性的同时确保最佳的成本效果配置。与此同时,Ruijin医院与华为合作推出了中国的第一个病理AI模型Ruizhi Pathology,该模型可自动化病理幻灯片分析,并具有3,000张幻灯片的日常处理能力。随着进一步的多模式集成,该系统将扩展以涵盖复杂的诊断方案。同样,上海第四人医院已经实施了局部的DeepSeek部署,将30,000多个典型病例和区域治疗指南的医学知识基础整合在一起,提高了病历的产生效率并为医生提供精确的诊断支持。上海第六人医院的金山分公司已将DeepSeek完全融入医师工作站,为疾病诊断提供实时援助,并降低了复杂病例中误诊的风险。
混凝土是由于其机械性和结构特性,适用于中子和伽玛辐射保护,因此是这种屏蔽的主要材料。本综述提供了核辐照对核电站(NPPS)生物屏蔽中混凝土结构完整性的影响的全面检查。本综述强调了混凝土氢含量在减弱中子频道及其形状,密度和成本效果的多功能性中的关键作用。审查是系统地收集并审查了先前有关该主题的研究论文,重点是针对暴露于伽玛和中子辐射的混凝土中机械性能降解的研究。我们的方法涉及从同行评审期刊,会议记录和技术报告中进行广泛的文献搜索,批判性分析和综合发现的发现,这些报告特定地解决了暴露于Gamma和中子辐射的混凝土结构中机械性能的退化。γ辐射诱导水合水泥糊中的放射分解,而中子辐射会导致聚集体结构的改变,从而导致体积扩张并降低机械强度。此外,本综述强调了化学攻击,水分和温度升高在反应堆运行过程中的混凝土降解的效果。关键发现强调了对混凝土生物屏蔽的降解机制进行进一步研究的需求,这强调了各种核辐射的影响。这种理解对于确保具体的长期耐用性和在NPP中的效果至关重要,从而有助于核能设施的安全和可持续运行。
适用性,出色的化学和物理稳定性以及有利的晶体生长习惯。金属卤化物被高度视为重要的光学功能材料,因为它们的优势是易于制备,丰富的配位环境,宽透明范围,高激光诱导的损伤阈值,并且在发光的边界eLS中应用,太阳能电池,太阳能电池,激光频率转换等等。22 - 29中,二元金属卤化物由于其简单的组成和成本效果而被广泛使用:KBR通常用作傅立叶变换红外(FT-IR)光谱的背景材料,因为其广泛的透明范围超过25 m m; 30 CAF 2和BAF 2具有出色的机械性能,热稳定性和辐射抗性,以及从深紫外线(UV)到IR区域的高透明度,这些透明度可用于光学棱镜,透镜,楔形板,隔膜,隔膜和其他重要的光学组件。31由于上述原因,二元金属卤化物的出色物理和化学特性与我们对下一代双重晶体材料的期望一致,这使得它们被视为具有巨大潜力的双折射材料国库。另一方面,金属卤化物显示出各种的配位模式,包括线性,三角形锥体,四面体和方形锥体结构,这是有希望的机会,可以识别具有相当性的构建块的隔离性各向异性各向异性材料。在基于Hg的卤化物中,除了传统的[HGX 4](X =卤素)四面体外,还存在很少的[X - HG - X]或[X - HG - HG - HG - HG - X]线性单位。25通过比较和筛选,由于其丰富的散装和广泛的透明范围,基于二进制的基于二进制汞(基于HG)的卤化物已成为我们的焦点。32 - 36 in