摘要:水系锌电池(AZB)是一种很有前途的储能技术,因为它们具有高理论容量、低氧化还原电位和安全性。然而,金属锌表面的枝晶生长和寄生反应会导致严重的不稳定性。本文我们报道了一种获得超细锌纳米颗粒阳极的新方法,该方法通过使用乙二醇单甲醚(EGME)分子来操纵锌的成核和生长过程。结果表明,EGME 与 Zn 2+ 复合以适度增加成核的驱动力,并吸附在锌表面以通过细化晶粒来防止 H- 腐蚀和树枝状突起。因此,纳米级阳极具有高库仑效率(约 99.5%)、长循环寿命(超过 366 天和 8800 次循环)以及与全电池中最先进的正极(ZnVO 和 AC)出色的兼容性。这项研究为水性金属离子电池的界面工程提供了一种新途径,对 AZB 的商业化未来具有重要意义。关键词:水性锌电池、锌金属阳极、超细纳米颗粒、枝晶生长、寄生反应
我们研究了通过定向能量沉积 (DED) 获得的 Fe-Fe 2 Ti 共晶微观结构,其过共晶成分为 Fe-17.6 at.% Ti。实现了低至 200 nm 的超细层状间距,这种特性只能通过吸铸等方法在薄样品中获得。然而,在层间边界 (ILB) 处观察到主要 Fe 2 Ti 相的球状形态,并带有 Fe 相的晕圈。因此,对于给定的 DED 条件,晶体结构在 ILB 上是不连续的。二维和三维分析方法都用于量化微观结构,包括高分辨率同步全息 X 射线计算机断层扫描 (HXCT)。通过相场建模,针对选定的成核场景和从共晶到过共晶的合金成分,探索了共晶系统在定性对应于激光增材制造条件下的一般行为。虽然模拟提供了有关微观结构形成的宝贵见解,但模拟指出,我们需要进一步加深对增材制造条件下熔化的理解,以便实施合适的成核和/或自由生长模型。模拟还表明,使用精确的共晶合金成分可以防止球状 ILB。
摘要:通过解决经典成核理论 (CNT) 的缺陷,我们开发了一种从成核速率实验中提取小水团簇自由能的方法,而无需对团簇自由能的形式进行任何假设。对于高于 ∼ 250 K 的温度,从实验数据点提取的自由能表明,随着团簇尺寸的变化,它们与 CNT 预测的自由能之比表现出非单调行为。我们表明,对于单体,该比率从几乎为零增加,并在接近大团簇的 1 之前通过(至少)一个最大值。对于低于 ∼ 250 K 的温度,提取的能量与 CNT 预测之间的比率行为会发生变化;它随着团簇尺寸的增加而增加,但对于几乎所有的实验数据点,它都保持在 1 以下。我们还应用了最先进的量子力学模型来计算水团簇(2 − 14 个分子)的自由能;尽管温度高于和低于 ∼ 298 K,结果仍然支持观察到的基于温度的行为变化。我们比较了两种不同的模型化学物质 DLPNO-CCSD(T)/CBS// ω B97xD/6-31++G ** 和 G3,并与水二聚体形成的实验值进行了比较。
我们研究了通过定向能量沉积 (DED) 获得的 Fe-Fe 2 Ti 共晶微观结构,其过共晶成分为 Fe-17.6 at.% Ti。实现了低至 200 nm 的超细层状间距,这种特性只能通过吸铸等方法在薄样品中获得。然而,在层间边界 (ILB) 处观察到主要 Fe 2 Ti 相的球状形态,并带有 Fe 相的晕圈。对于给定的 DED 条件,晶体结构在 ILB 上是不连续的。二维和三维分析方法都用于量化微观结构,包括高分辨率同步全息 X 射线计算机断层扫描 (HXCT)。通过相场建模探索了在定性对应于激光增材制造条件下共晶系统的一般行为,适用于选定的成核场景和从共晶到过共晶的合金成分。虽然模拟提供了有关微观结构形成的宝贵见解,但模拟指出,我们需要进一步加深对增材制造条件下熔化的理解,以便实施合适的成核和/或自由生长模型。模拟还表明,使用精确的共晶合金成分可以防止球状 ILB。
为此,设计并制造了具有特定功能的专用DED弧设备进行研究。详细分析了热锻对316LSi不锈钢的影响,并验证了其在其他相关工业材料中应用的可行性。结论是,热锻可以诱导动态再结晶,增加成核点并阻止外延晶粒生长。因此,它有助于整体细化和均匀的微观结构,并提高机械性能。
对二维过渡金属二核苷的显着兴趣已通过可伸缩的蒸气相,例如化学蒸气沉积(CVD)和原子层沉积(ALD)进行了许多实验研究。ALD通常允许较低的沉积温度,化学前体的成核需要与表面官能团的反应。用于研究ALD建模的一种常见的第一原理方法是计算提出的反应途径的活化能。在这项工作中,我们使用密度功能理论(DFT)计算了部分电荷密度,状态(LDO)的局部密度(LDOS),不良电荷分析,吸附能和电荷密度差,以研究MOF 6在包括Al 2 O 3,HFO 2,HFO 2和MGO在内的三个氧化物表面上MOF 6的成核。我们的发现表明,羟基(OH)有助于降低MOF 6的前半循环期间的反应屏障,并促进氧化物底物上前体的化学吸收。这一发现得到了高离子MF X(M =金属,X = 1,2,3)在氧化物表面的键的支持。通过比较有和没有羟基的表面,我们强调了表面化学的重要性。
人们对二维过渡金属二硫属化物产生了浓厚的兴趣,这引发了大量使用可扩展气相方法(如化学气相沉积 (CVD) 和原子层沉积 (ALD))对其合成进行实验研究。ALD 通常允许较低的沉积温度,并且化学前体的成核需要与表面功能团发生反应。研究 ALD 建模的常用第一性原理方法是计算拟议反应途径的活化能。在这项工作中,我们使用密度泛函理论 (DFT) 计算了部分电荷密度、局部态密度 (LDoS)、Bader 电荷分析、吸附能和电荷密度差,以研究 MoF 6 在三种氧化物表面(包括 Al 2 O 3 、HfO 2 和 MgO)的成核。我们的研究结果表明,羟基 (OH) 有助于降低 MoF 6 前半周期内的反应势垒并促进前体在氧化物基底上的化学吸附。这一发现得到了氧化物表面高离子性 MF x(M = 金属,x = 1、2、3)键形成的支持。通过比较有羟基和无羟基的表面,我们强调了表面化学的重要性。
Sb 2 S 3 是一种很有前途的环保半导体,可用于高性能太阳能电池。但是,与许多其他多晶材料一样,Sb 2 S 3 受到非辐射复合和晶界 (GB) 载流子散射的限制。这项工作表明,通过在 Sb 2 S 3 沉积的前体溶液中加入适量的 Ce 3 +,Sb 2 S 3 薄膜中的 GB 密度可以显著从 1068 ± 40 nm μ m − 2 降低到 327 ± 23 nm μ m − 2。通过对结构、形貌和光电特性的广泛表征,并辅以计算,我们发现一个关键因素是在 CdS/Sb 2 S 3 界面处形成一层超薄 Ce 2 S 3 层,这可以降低界面能并增加 Sb 2 S 3 和基底之间的粘附功,以促进 Sb 2 S 3 的异质成核,并促进横向晶粒生长。通过减少晶界和/或 CdS/Sb 2 S 3 异质界面的非辐射复合,以及改善异质结处的载流子传输特性,这项工作实现了高性能 Sb 2 S 3 太阳能电池,其功率转换效率达到 7.66%。开路电压 (V OC ) 达到了惊人的 796 mV,这是迄今为止报道的 Sb 2 S 3 太阳能电池的最高值。这项工作提供了一种同时调节 Sb 2 S 3 吸收膜的成核和生长的策略,以提高设备性能。
Avanish Kumar Srivastava博士获得了硕士学位。(hons。)来自IIT Roorkee的物理学,UOR(1986),M。Tech。 IIT Kanpur(1988)和博士学位的材料科学中的。在IISC Bangalore(1996)的冶金学中,在工程学院中。 他的多产研究适用于理解各种材料的成核增长机制,相变,微观结构和缺陷,以散装和引人入胜的纳米规模的形式出色,并且在全球范围内都非常出色,并且众所周知。 他为与(i)迅速固化的金属系统有关的高级材料领域的各种项目做出了巨大贡献,(ii)纳米结构,(iii)复合材料,(iv)太阳能,(v)热电学,(v)热电,(vi)磁性,(vi)磁性,(vii)对财富的浪费,以及(viii)和(viii)安全,健康和环境。 研究和学者的贡献来自IIT Roorkee的物理学,UOR(1986),M。Tech。IIT Kanpur(1988)和博士学位的材料科学中的。在IISC Bangalore(1996)的冶金学中,在工程学院中。 他的多产研究适用于理解各种材料的成核增长机制,相变,微观结构和缺陷,以散装和引人入胜的纳米规模的形式出色,并且在全球范围内都非常出色,并且众所周知。 他为与(i)迅速固化的金属系统有关的高级材料领域的各种项目做出了巨大贡献,(ii)纳米结构,(iii)复合材料,(iv)太阳能,(v)热电学,(v)热电,(vi)磁性,(vi)磁性,(vii)对财富的浪费,以及(viii)和(viii)安全,健康和环境。 研究和学者的贡献。在IISC Bangalore(1996)的冶金学中,在工程学院中。他的多产研究适用于理解各种材料的成核增长机制,相变,微观结构和缺陷,以散装和引人入胜的纳米规模的形式出色,并且在全球范围内都非常出色,并且众所周知。他为与(i)迅速固化的金属系统有关的高级材料领域的各种项目做出了巨大贡献,(ii)纳米结构,(iii)复合材料,(iv)太阳能,(v)热电学,(v)热电,(vi)磁性,(vi)磁性,(vii)对财富的浪费,以及(viii)和(viii)安全,健康和环境。研究和学者的贡献
N.Gopalakrishnan 博士于 1997 年在钦奈安娜大学获得博士学位,研究方向为 III-V 族半导体的成核和生长动力学。获得博士学位后,他前往瑞典皇家理工学院进行博士后研究。后来,他在日本 KIT 和日本 AIST 从事博士后研究 3 年。他曾获得日本政府日本科学技术部颁发的著名 STA(即 JSPS)奖学金,在日本筑波 AIST 工作。之后,他还在韩国东义大学担任博士后研究员一年半。