作者:Edgar Dutra Zanotto 1953 年,微晶玻璃被发现,这多少有点偶然。从那时起,世界各地的研究机构、大学和公司发表了许多激动人心的论文,并获得了许多与微晶玻璃相关的专利。微晶玻璃 (也称为玻璃陶瓷、焦陶瓷、玻璃陶瓷、玻璃陶瓷和硅酸盐) 是通过对某些玻璃进行受控结晶而制成的,通常由成核添加剂诱导。这与自发表面结晶相反,后者在玻璃制造中通常是不受欢迎的。它们总是含有残留玻璃相和一个或多个嵌入的晶相。结晶度在 0.5% 到 99.5% 之间,最常见的是在 30% 到 70% 之间。受控陶瓷化可以产生一系列具有有趣的、有时是不寻常的特性组合的材料。
本文报道了通过相场模拟解决材料科学悬而未决的问题的最新突破。它们涉及增材制造中的凝固结构形成、贝氏体转变过程中的碳重新分布以及高温合金高温蠕变过程中的损伤开始。第一个例子涉及凝固过程中外延生长和成核之间的平衡。第二个例子涉及贝氏体转变中扩散控制和块状转变占主导地位的争议。第三个例子涉及高温合金中的定向粗化(筏化),这是一种扩散控制的相变:沉淀物相干性的丧失标志着与晶格旋转和拓扑反转相关的损伤的开始。本文根据需要回顾了相场法的技术细节,并讨论了该方法的局限性。
作者:Edgar Dutra Zanotto 1953 年,微晶玻璃被发现,这多少有点偶然。从那时起,世界各地的研究机构、大学和公司发表了许多激动人心的论文,并获得了许多与微晶玻璃相关的专利。微晶玻璃 (也称为玻璃陶瓷、焦陶瓷、玻璃陶瓷、玻璃陶瓷和硅酸盐) 是通过对某些玻璃进行受控结晶而制成的,通常由成核添加剂诱导。这与自发表面结晶相反,后者在玻璃制造中通常是不受欢迎的。它们总是含有残留玻璃相和一个或多个嵌入的晶相。结晶度在 0.5% 到 99.5% 之间,最常见的是在 30% 到 70% 之间。受控陶瓷化可以产生一系列具有有趣的、有时是不寻常的特性组合的材料。
作者:Edgar Dutra Zanotto 1953 年,微晶玻璃被发现,这多少有点偶然。从那时起,世界各地的研究机构、大学和公司发表了许多激动人心的论文,并获得了许多与微晶玻璃相关的专利。微晶玻璃 (也称为玻璃陶瓷、焦陶瓷、玻璃陶瓷、玻璃陶瓷和硅酸盐) 是通过对某些玻璃进行受控结晶而制成的,通常由成核添加剂诱导。这与自发表面结晶相反,后者在玻璃制造中通常是不受欢迎的。它们总是含有残留玻璃相和一个或多个嵌入的晶相。结晶度在 0.5% 到 99.5% 之间,最常见的是在 30% 到 70% 之间。受控陶瓷化可以产生一系列具有有趣的、有时是不寻常的特性组合的材料。
利用原位同步加速器测量研究 AF-MoP-68 铜 ALD 薄膜成核,Aleksandra Figura-Jagoda、S. Klejna、M. Marzec,克拉科夫 AGH 大学,波兰材料与纳米技术学术中心;E. Kokkonen,瑞典 Max IV 实验室;A. Kwiatkowski,克拉科夫 AGH 大学,波兰物理与应用计算机科学学院;K. Ma ć kosz、C. Minzoni,Empa,瑞士联邦材料科学与技术实验室,图恩,瑞士;A. Szkudlarek,克拉科夫 AGH 大学,波兰材料与纳米技术学术中心;I. Utke,Empa,瑞士联邦材料科学与技术实验室,图恩,瑞士;M. Sikora,克拉科夫 AGH 大学,波兰材料与纳米技术学术中心
图2。Ag NP阵列的电沉积。 (a)在包含0.25 mm Agno 3和250 mm kno 3的水溶液中以块状ITO电极(直径0.5 mm)获得的循环伏安图。 (b)示意图在单个沉积周期中描述探针位置,应用电位和电流。 红色虚线突出了周期中的重要事件:(1)检测探针样本接触,(2)应用阴极电位,(3)NP成核,以及(4)探针撤回和生长终止。 (c)示例在阵列制造过程中观察到的沉积瞬变,每个位置沉积了5个电荷。 使用〜1 µm移液器填充有0.25 mm Agno 3和0.25 mm kno 3的水溶液进行电沉积。 请注意,为了清楚起见,绘制了电流的负数。 (d)(c)中指示的瞬态视图。 在(e)和(f)中提供了制造阵列的光学和扫描电子显微镜图像。Ag NP阵列的电沉积。(a)在包含0.25 mm Agno 3和250 mm kno 3的水溶液中以块状ITO电极(直径0.5 mm)获得的循环伏安图。(b)示意图在单个沉积周期中描述探针位置,应用电位和电流。红色虚线突出了周期中的重要事件:(1)检测探针样本接触,(2)应用阴极电位,(3)NP成核,以及(4)探针撤回和生长终止。(c)示例在阵列制造过程中观察到的沉积瞬变,每个位置沉积了5个电荷。使用〜1 µm移液器填充有0.25 mm Agno 3和0.25 mm kno 3的水溶液进行电沉积。请注意,为了清楚起见,绘制了电流的负数。(d)(c)中指示的瞬态视图。在(e)和(f)中提供了制造阵列的光学和扫描电子显微镜图像。
这两个极端之间(见图1)。我们可以将连续建模进一步分为显微镜和宏观。以传统的化学工程反应动力学为类似物,也有两个尺度的建模。微动力模型的重点是分解对基本步骤的反应,而宏观的化学反应建模采用大量反应速率常数,并限制了设计化学反应器的速率限制步骤,其中工程师关注的是OW速率和产品产量。同样,我们将使用微观和宏观术语来描述锂 - 硫电池的连续建模来构建本文。显微镜建模是关于以机械方式代表关键物理现象,以阐明潜在的机制。除了微动物外,这可以更大的形态学细节来查看阴极结构,将亚微米水平的内部运输建模到粒子,或成核和生长
能源部长 Samuel Bodman 前往桑迪亚宣布建立每年拨款 500 万美元的国家固态照明研究与开发中心,其中包括来自能源部五个纳米科学研究中心的研发。桑迪亚被指定为牵头实验室,每年获得约 300 万美元用于等离子体发光二极管 (LED)、纳米线模板基板、量子点纳米荧光粉和纳米工程成核层等项目。6 月,Julia Phillips (1100) 主持了能源部基础能源科学研讨会,主题为“固态照明的基础研究需求”,以确定这种节能技术所需的其他基础研究。(http://www.sc.doe.gov/bes/reports/list.html) (1100) ER&N 集成光子晶格的 LED 发出的光
疲劳寿命预测,178 疲劳极限,101 疲劳特性,8 蒸汽轮机钢,210 断裂力学,60,101,129,153 频率,13 微动,机械部件,190 微动桥,接触压力分布,85 微动腐蚀,23 球墨铸铁和钢的疲劳强度,178 高强度低合金钢,217 微动装置,13 微动疲劳,33 铝导体钢增强电导体,231 碳纤维增强环氧层压板,243 接触压力分布,85 腐蚀作用,217 具有明确定义特性的实验,69 微动图和,49 历史,8 机制,23 发电行业,153 强度改进模型分析,101 变量,60 微动疲劳损伤表征技术,170 成核,23 微动疲劳试验方法评估,33概念框架,1现行实践,263
疲劳寿命预测,178 疲劳极限,101 疲劳特性,8 蒸汽轮机钢,210 断裂力学,60,101,129,153 频率,13 微动,机械部件,190 微动桥,接触压力分布,85 微动腐蚀,23 球墨铸铁和钢的疲劳强度,178 高强度低合金钢,217 微动装置,13 微动疲劳,33 铝导体钢增强电导体,231 碳纤维增强环氧层压板,243 接触压力分布,85 腐蚀作用,217 具有明确定义特性的实验,69 微动图和,49 历史,8 机制,23 发电行业,153 强度改进模型分析,101 变量,60 微动疲劳损伤表征技术,170 成核, 23 微动疲劳试验方法评估,33 概念框架,1 当前实践,263