2.1 白蜡螟的威胁 白蜡螟又名翡翠灰螟,是一种对白蜡树具有高度破坏性的害虫,因为幼虫在成熟期进食时会造成严重的树木死亡。这种害虫目前正在俄罗斯欧洲部分和乌克兰东部蔓延,并对美国和加拿大的白蜡树种群造成了巨大破坏。自 2002 年在密歇根州发现以来,这种甲虫已蔓延到至少 36 个美国州(APHIS,2023)和 5 个加拿大省。据估计,这种甲虫已经杀死了数亿棵森林和观赏树木,造成了重大经济损失,并对北美几种白蜡树种以及相关生物多样性和生态系统的生存造成了严重威胁(CABI,2009)。根据其造成的负面经济、社会和环境风险,根据欧盟立法,这种害虫被列为重点害虫。这种害虫原产于亚洲,在中国和俄罗斯远东地区都有分布。在这些地区,白蜡树、大叶白蜡树和水曲柳是该害虫的首选寄主。在北美,所有白蜡树种,包括美洲白蜡树、黑白蜡树和宾夕法尼亚白蜡树都已知是该害虫的寄主。欧洲的主要白蜡树种,欧洲白蜡树、欧洲白蜡树和狭叶白蜡树也是合适的寄主。在亚洲,人们认为榆树、胡桃树和枫杨属树种是该害虫的潜在寄主。
安得拉邦贡土尔阿查里亚 NG 兰加农业大学 Maruteru 区域农业研究站 (RARS) 开发了一种超级水稻品种 Swarna。Swarna 是一种采用谱系育种法开发的籼稻品种。该品种源自 Vasista 和 Mahsuri 的杂交,全球种植面积近 500 万公顷(Merugumala 等人,2019 年)。该植物为半矮生,直立株型,穗型发达,株高 90-110 厘米,每平方米 250-260 个穗,叶子深绿色,成熟期为 145-150 天。该品种无芒,尖穗呈黄色,容重为 21.5 克。籽粒长 5 毫米,宽 2.46 毫米。 Swarna 的白色谷粒的脱壳、碾磨和整精米回收率分别为 78%、68% 和 65%。该品种的碱扩散值为 4,直链淀粉含量为 24.5%。该品种的一个重要表型标记是壳,颜色为金黄色。谷粒偶尔出现白垩质。该品种的平均产量为 5.5 吨/公顷。该品种抗细菌性叶枯病 (BLB)。然而,它具有中等抗倒伏性、中等早期幼苗活力、中等根系结构和高氮磷利用效率。该品种的谷粒短而粗,直链淀粉含量中等。由于该品种在低投入管理下具有高产量,农民广泛采用该品种。Swarna 水稻品种通常在雨养和灌溉条件下种植。该品种在不同环境下表现出更高的缓冲能力(Mohapatra 等人,2021 年)。
缩写:香气喜好,AROMA;平均产量,YIELD;贝克比率,PR;贝叶斯稀疏线性混合模型,BSLMM;豆大小,GSIZ;叶斑病,CERC;咖啡潜叶虫,LMINER;咖啡叶锈病,RUST;平衡,EQUIL;风味喜好,FLAVOR;开花时间,FL;一般配合力,GCA;一般倾向,GL;一般尺度,GSCE;全基因组关联研究,GWAS;基因组选择,GSCE;叶枯病,LBLIGHT;似然比检验,LRT;连锁不平衡,LD;标记辅助选择,MAS;成熟期,UNIF;成熟时间,MAT;参与决定表型的稀疏效应基因座的数量,n_gamma;整体喜好,OVLIKING;感知,HEDONIC;植物结构,PRT;后验包含概率,PIP;主成分分析,PCA;由具有主要效应的遗传变异解释的遗传变异比例,rho;由稀疏效应和随机效应解释的表型变异比例,PVE;仅由稀疏效应解释的 PVE 比例,PGE;数量性状基因座,QTL;鼻后,RETRO;筛残差,RES;筛孔尺寸,M15;筛孔尺寸,M13;筛孔尺寸,M10;简单序列重复,SSR;单核苷酸多态性,SNP;酸味,ACIDITY;特定配合力,SCA;甜度,SWEET;干加工和未烘焙的生豆重量(以克为单位),GREEN;使用自然干燥方法(日晒豆)后的咖啡果实重量(以克为单位),CHERRY;2014-2015 年产量,YB1; 2016-2017 年产量,YB2;2018-2019 年产量,YB3。
ABO ABO 血型系统 AI 人工智能 AML 急性髓系白血病 BCR-ABL 断点聚类区域 Abelson-1 BOADICEA 乳腺和卵巢疾病发病率分析和携带者估计算法 CML 慢性粒细胞白血病 COSMIC 癌症体细胞突变目录 COVID-19 SARS-CoV-2 CRA 查尔斯河协会 CVD 心血管疾病 DAISY 年轻人糖尿病自身免疫研究 DALY 伤残调整生命年 DKA 糖尿病酮症酸中毒 DM 糖尿病 DNA 脱氧核糖核酸 DSS 决策支持系统 EFPIA 欧洲制药工业协会联合会 EGFR 表皮生长因子受体 EOP EFPIA 肿瘤学平台 EU 欧盟 ExAC 外显子组聚合联盟 FH 家族性高胆固醇血症 GBD 全球疾病负担 GENIE 基因组学证据肿瘤信息交换 HER2 人表皮生长因子受体 2 IBIS 国际乳腺癌干预研究 ICU 重症监护病房 INCa 法国国家癌症研究所 (INCa) LDCT 低剂量计算机断层扫描 LDL 低密度脂蛋白 MODY 青年糖尿病成熟期 MRD 可测量残留疾病 mRNA 信使核糖核酸 MSI 微卫星不稳定性 MUC1 粘蛋白 1 NCD 非传染性疾病 NGS 新一代测序 NHS 国家医疗服务体系 NICE 国家健康与临床优化研究所 NSCLC 非小细胞肺癌 NTRK 神经营养性酪氨酸受体激酶 OS 总生存期 PCR 聚合酶链反应 PDT 精准诊断测试 PFS 无进展生存期 PH 精准健康 PM 精准医疗 QALY 质量调整生命年 QoL 生活质量 TCGA 癌症基因组图谱 TMB 肿瘤突变负担 TTM 上市时间 1 型糖尿病 1 型糖尿病 英国 英国 美国 美国
驯化是一个动态且持续的过程,通过选择理想的农作物特征来将野生物种转化为栽培物种,以满足人类的需求,例如口味、产量、储存和栽培方法。人类的植物驯化始于大约 12,000 年前的新月沃地,并传播到世界各地,包括中国、中美洲、安第斯山脉和近大洋洲、撒哈拉以南非洲和北美东部。印度河流域文明在豆科植物的驯化中发挥了重要作用。木豆、黑豆、绿豆、扁豆、蛾豆和马豆等作物起源于印度次大陆,新石器时代的考古记录表明这些作物最早是由该地区的早期文明驯化的。野生祖先驯化并进化为当今的优良品种,对全球粮食供应和农作物改良做出了重要贡献。此外,食用豆科植物通过保护人类健康和最大限度地减少气候变化影响,为粮食安全做出了贡献。在驯化过程中,豆科作物物种经历了严重的遗传多样性丧失,品种中仅保留了非常狭窄的变异范围。在种子传播和跨大陆移动过程中,遗传多样性进一步减少。一般来说,只有少数性状在整个物种的驯化过程中具有突出地位,例如抗碎裂性、种子休眠丧失、茎生长行为、开花-成熟期和产量性状。因此,识别和了解驯化反应位点通常有助于加速新物种的驯化。导致驯化结果发生重大改变的基因和代谢途径可能有助于新作物的快速驯化。此外,“组学”科学、基因编辑技术和功能分析的最新进展将加速新作物物种的驯化和作物改良,而不会损失太多遗传多样性。在这篇评论中,我们讨论了主要粮食作物的起源、多样性中心和种子移动
目前的工作提出了一种新颖的自动互联网(IoT)光谱传感系统,用于通过反射信号对葡萄成熟的现场光学监测。为此,开发,表征和操作在实验室和现场条件下量身定制的硬件。它包括三个互补模块:光学模块,主机模块和控制器模块。光学模块包括四个光电探测器和四个LED,最大发射波长为530、630、690和730 nm,它们与葡萄浆果直接接触。主机模块包括LED驱动程序和模拟前端,以获取信号。最后,控制器模块提供了对系统的完全控制,并确保数据存储,电源管理和连接性。该系统能够通过线性响应(R 2> 998)在4 - 100%的范围内测量反射率,并且在不同的光学单元之间具有很高的可重复性。这种设计使从红色收集反射信号成为可能(cv。Touriga Nacional)和白色(cv。Loureiro)实验室和现场环境中的葡萄品种。在整个成熟期(大约两个月)中,这种光学指纹(由不同的反射强度组成)与葡萄浆果质量参数的演变之间的关系进行了分析和讨论。实验室数据用于建立一个基于部分最小二乘正方形的多元模型,以预测两个品种中总可溶性固体(TSS)含量。ir)甚至荧光。模型误差(交叉验证中的均方根误差)分别为2.31和0.73°,Touriga Nacional和Loureiro分别为Brix。在系统实时预测TSS的潜力的说明性示例中,将该模型应用于在现场获取的数据。监测期内收集的现场观察结果还提供了有关光传感器无人值守操作期间可能发生的潜在问题的相关信息。此外,所提出的光学模块的模块化体系结构使使用不同的LED和光电视图以及光学过滤器的组装成为可能。这创造了使用相同原理在不同光谱范围内测量反射率的可能性(例如,本文所述的结果为这项技术的未来发展铺平了工作,其中包括基于反射数据的最相关的葡萄成熟参数的预测模型,以及作为无线传感器网络的一部分的操作。
摘要 一个社会的不平等取决于它处于哪个经济发展阶段等因素。本文将经济发展分为三个阶段:城市化阶段,劳动力供给曲线平缓;成熟阶段,劳动力供给曲线向上倾斜;追求阶段,劳动力需求曲线平缓,因为新兴经济体的资本回报率高于本国。虽然标准的经济学理论都是以经济处于成熟阶段的假设为基础的,但当今多数发达国家已处于追求阶段。由于劳动力的谈判地位会随着经济的不同阶段而发生变化,因此解决不平等问题的政策也必须随着经济发展阶段的变化而变化。 关键词 不平等、追求经济体、经济发展阶段、劳动力市场、资本回报率 收入不平等已经成为经济学中最热门和最具争议的问题之一,不仅在发达国家,而且在中国和其他地方也是如此。越来越多的人对贫富差距感到不安,特别是在托马斯·皮凯蒂的《21 世纪资本论》2 引发了关于财富最优分配的新一轮辩论之后,而这一问题在很大程度上被经济学界忽视了。本文认为,收入不平等的决定因素会随着经济发展阶段的变化而变化。为此,我们确定了工业化的三个阶段:城市化时代,此时经济尚未达到刘易斯转折点 (LTP);后刘易斯转折点成熟期或黄金时代,此时经济沿着向上倾斜的劳动力供给曲线移动;追求时代,此时新兴经济体的海外资本回报率高于国内。刘易斯转折点指的是城市工厂最终吸收了所有剩余农村劳动力的点。 (本文使用 LTP 一词只是因为它是一个国家经济发展中特定点的众所周知的表达方式;该术语的使用并不是指亚瑟·刘易斯爵士提出的经济增长模型。)工业化开始时,大多数人都生活在农村地区。只有极少数受过教育的精英才拥有生产和销售商品所需的技术知识。祖先在萧条的农场生活了几个世纪的家庭没有这样的知识。因此,工业化初期的大部分收益都流向了受过教育的少数人,而其余人口只是为工业家提供劳动力。由于农村有如此多的剩余工人,工人的工资在几十年内一直处于低迷状态,直到达到 LTP。图 1 从劳动力供求的角度说明了这一点。劳动力供给曲线几乎是水平的(DHK),直到达到刘易斯转折点(K),因为
(1个农业和生命科学研究生院,东京大学)[目的]近年来,由于人们担心能源和食物自给自足的减少以及全球变暖,进口资源的兴起以及Yen的弱点,可持续生物量作物引起了人们的关注。生物量作物不仅用作生物产品的原材料,而且还用作饲料。在这项研究中,使用基因组编辑技术生产了“非盛大的大米”,其用途是通过测量其户外培养,生物量和可溶性糖和淀粉含量来评估作为生物质和饲料作物的。 [材料和方法]具有栽培的水稻品种“ koshihikari”,这是一种双突变体(去除异国基因),florogen基因和㻴ニ㻟ニックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロックロック这种突变抑制了开花,但是通过自我产生异态性的个体,突变体系统得以维持。此外,使用该双重突变体在背景中,使用一种技术在茎和茎中涉及糖和淀粉代谢的技术创建了参与茎和叶中糖和淀粉代谢的基因的突变。在户外培养这些基因组编辑系统时,他们已提前向教育,文化,体育,科学和技术咨询,并提交了一项实验计划,以便接受它们。每个突变体的收获分为黄色成熟期(从㻟㻜㻜㻠㻜㻜㻜㻜㻜㻜㻜㻜です),这是普通饲料水稻品种的收获期,黄色成熟期后约几周。除了测量收获个体的干重外,还从代表性的分er中测量了每个器官中可溶性糖和淀粉的浓度,并估计每个器官的产量。此外,测量了整个收获个体的可溶性糖和淀粉的浓度,并计算每个个体的可溶性糖和淀粉的重量。 [结果和讨论]收集了每个菌株(゚㻩ン),并测量其干重,结果表明,在黄色成熟期间收获的koshihikari是㻟㻜±㻤㻌ランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドラ㻤㻌ランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドラ㻟㻜±㻤㻌ランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドランドラ-riptherore,黄色成熟期后收获的干重是㻣㻣±㻝㻌ラック㻝㻌ラック±㻝㻌ラック,并且对非透性突变剂的生物量显着增加。此外,根据代表性耕种器的每个器官的可溶性糖浓度计算估计的产率,结果表明,Koshihikari大约是㻜㻚㻠㻛ロックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセックセック的,另一方面,估计的淀粉产量大约是㻞㻚㻞㻌㻌㻌㻠ラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドラインドライン进一步,目前正在测量每个菌株的溶剂糖和淀粉的重量。此外,我们将报道在不开放的菌株中涉及糖和淀粉代谢的基因中引入突变的菌株的分析结果。以上结果表明,非灌木菌株中生物量显着增加,茎和叶片中可溶性糖和淀粉的显着积累,表明不明显的koshihikari大米植物作为高生物量的水稻品种的有用性。此外,它被认为是饲料稻的非常有用的,因为它在喂养牛时不包含高度未消除的稻田。此外,为了实施“脸红的大米”血统,该公司还致力于开发技术,以选择不以种子表型为指标从单独群体中开花的个人。