CO 2捕获,利用和存储(CCUS)技术是减轻温室气体排放的最有效的方法,吸引了全球相当大的关注。1,2 CCUS技术基于二氧化碳的捕获和分离。3要实现捕获和隔离二氧化碳的目的,膜分离已成为普遍的方法。该技术允许通过二氧化碳和膜之间的物理或化学相互作用选择性渗透二氧化碳。研究二氧化碳膜分离方法的研究围绕高效率膜的制备和获取。目前,经过广泛研究的CO 2分离膜包括无机,有机和新兴膜。无机膜主要由二氧化硅,沸石和石墨烯膜组成。有机膜包括纤维素,聚酰胺,多硫酮和聚醚膜。新兴膜包括复合材料,金属 - 有机框架(MOF),Zeolitic imidazo-late Framework(ZIF),碳分子筛(CMS),固有微孔(PIM)的聚合物(PIM)和促进的运输膜。具有低能消耗和高分离效率的显着优势,膜分离方法正在迅速出现,因为二氧化碳捕获和分离的全球前进技术。4
图1:Nafion N117(A,C)的电导率(A,B)和电解质质量分数(C,D)和烟雾E-620(B,D)在NaOH或KOH电解质中浸泡在Select浓度(MOH IN MOH代表Na或K)处的膜。在表S2和S3中将相应的数据表列出。
利益冲突披露:Sun博士报告说,辉瑞公司(Pfizer,Inc。)(现任雇员)在已提交的工作之外雇用。Young报告说,在研究过程中获得了美国国立卫生研究院的赠款。Heerman报告说,在研究过程中获得了美国国立卫生研究院的赠款。Toh博士报告说是与本研究无关的方法论问题的辉瑞和默克公司的顾问。没有其他披露报告。
1.国防生产技术基地战略制定背景 (一)战略制定背景及定位 (二)国防生产技术基地特点 (三)基地周边环境变化 ①生产基地弱化和技术基础 ② 欧洲企业重组和国际联合开发的进展 ③ 制定国防装备转让三原则 2.维持和加强国防生产和技术基础的目标和意义 (1) 确保安全独立性 (2) 对提高威慑力、维持和提高议价能力的潜在贡献 (3) 先进技术的国内应用 对产业进步的贡献 3.推进措施的基本观点 (1) 建立长期公私伙伴关系 (2) 增强国际竞争力 (3) 平衡国防装备采购的效率和优化 4.如何获取国防装备 (1) 国内开发 (2) 国际联合开发和生产 (3) 国内许可生产 (4) 民用产品等的利用 (5) 进口 5.维持和强化国防生产和技术基础的措施 (1) 完善合同制度等 ○ 灵活运用全权合同 ○ 进一步签订长期合同(多年批量采购)等 (2) 研究开发相关措施○ 研究开发 制定愿景 ○ 加强与大学和研究机构的合作 ○ 为未来国防应用前景广阔的先进研究提供资金等 (3) 国防装备和技术合作等 ○ 深化与美国的合作关系 ○ 建立新型合作关系建设(欧洲主要国家、澳大利亚、印度、东盟等) ○国际后勤保障贡献 ○国防装备和技术合作基础设施建设 ○技术管理、保密保护等 (4)国防工业组织相关工作 ○国防提高对商业和国防工业的重要性的理解 ○维持有弹性的供应链等 (5) 加强防卫省的结构 (6) 与相关部门的合作 6.各国防装备领域的现状及未来方向 (1) 陆地装备 (2) 物资等 (3) 船舶 (4) 飞机 (5) 弹药 (6) 制导武器 (7) 通信电子/指挥控制系统 ( 8)无人设备(9)网络/空间
胆固醇液晶(CLC)相。[1] CLC相的最引人注目的特征是由于光的选择性反射,其异常的光旋转功率和结构颜色。[2]结构颜色是光干扰现象的结果,例如由周期性纳米结构引起的Bragg反射和棒状分子的平均折射率。CLC的初始缺口位置可以通过公式λ0= n×p 0表示,其中λ0是初始缺口位置,n是平均折射率,P 0是初始音高长度。[3]自然采用了这种螺旋纳米结构,向花瓣,蝴蝶翅和甲虫的表皮提供各种颜色信息。[4]灵感来自此类天然光子纳米结构,许多研究人员使用光子晶体,等离子体纳米结构和元素制造人造结构颜色。[5]这些天然螺旋纳米结构的实例和人造结构颜色的研究已用于设计具有先进功能的材料,例如在光学传感,伪装和反伪造技术中使用的材料。[6]
带有2D材料的膜表面涂层已显示出用于水处理应用的防婚特性。但是,目前基于真空过滤的合成方法不容易缩放。本研究描述了一种可扩展的方法,可用于涂层膜,包括氧化石墨烯(GO),六边形硝酸氢硼(HBN),二硫化钼(MOS 2)和二硫化钨(WS 2)。使用含氧剂将含有每类2D薄片的异丙基醇溶液喷涂到商业聚偏氟化物(PVDF)上。纳米材料用聚多巴胺(PDA)作为一个可以轻松地集成到可扩展的滚动过程中的方法中的交联。使用扫描电子显微镜,原子力显微镜,接触角,拉伸强度测量和傅立叶转换红外光谱法评估了形态,表面粗糙度,疏水性,机械耐用性和化学组成的变化。在72 h的膜蒸馏(MD)实验中测试了2D纳米材料涂层的膜,并将其与原始的PVDF和PDA/PVDF膜进行了比较。使用高浓度的腐殖酸(150 ppm)和石蜡油(200 ppm)的盐排斥和MD性能稳定性评估,从而模拟了从油气萃取中模拟简单的有机废水。通量下降比以每小时渗透率损失百分比(%/h)来衡量,以便将来与不同的实验时间进行比较。所有膜的盐分排斥很高(> 99.9%)。原始的PVDF膜在10小时后因结垢而导致孔隙润湿失败,而PDA/PVDF膜的通量下降率最大(0.3%/小时)。涂有GO和HBN的膜的通量下降比较低(分别为0.0021±0.005和0.028±0.01%/h)。Go涂层的膜是唯一能够治疗含有表面活性剂和含有污垢的饲料的膜类型。改进的性能归因于表面粗糙度和疏水性的降低,这降低了污垢表面上的污垢吸附。这项工作显示了一种可延展的可扩展方法来克服MD中的犯规限制。
阴离子交换膜燃料电池 (AEMFC) 是质子交换膜燃料电池 (PEMFC) 的一种经济高效的替代品。高性能耐用的 AEMFC 的开发需要高导电性和坚固的阴离子交换膜 (AEM)。然而,AEM 通常在导电性和尺寸稳定性之间表现出权衡。本文报道了一种氟化策略,用于在聚(芳基哌啶)AEM 中创建相分离的形态结构。高度疏水的全氟烷基侧链增强了相分离,从而构建了用于阴离子传输的互连亲水通道。因此,这些氟化 PAP (FPAP) AEM 同时具有高电导率(80°C 时 > 150 mS cm − 1)和高尺寸稳定性(80°C 时溶胀率 < 20%)、优异的机械性能(拉伸强度 > 80 MPa 和断裂伸长率 > 40%)和化学稳定性(80°C 时在 3 m KOH 中 > 2000 小时)。使用本 FPAP AEM 的具有非贵重 Co-Mn 尖晶石阴极的 AEMFC 实现了 1.31 W cm − 2 的出色峰值功率密度。在 0.2 A cm − 2 的恒定电流密度下,AEM 在燃料电池运行 500 小时后保持稳定。
生长的纳米管的物理特性取决于石墨烯结构,其中碳原子以圆柱形形状排列。使用Biovia Materials Studio中的显示和表面创建工具检查了TMNP催化剂表面对最终石墨烯结构的模板效应。已经表明,铁(Fe)和钴(CO)的(111)平面的晶格常数和对称性与镍(Ni)的(1-10)平面匹配SWNT石墨烯结构。这表明(111)表面包含Fe和Co纳米颗粒区域,并且(1-10)表面包含Ni区域,并且可以种植其手性的SWNT,其性质可以种植。
人工智能已经影响和正在改变我们的生活,渗透到社会的各个领域,法律领域也不例外。智慧法院等人工智能司法的发展,是司法信息化对人工智能技术的积极回应。经历了电子化、网络化、数字化发展的中国司法,在人工智能时代实现了重大转型、融合发展。目前,人工智能在法院系统、检察系统和公安系统实现了一定的应用,但这些应用还停留在流于表面、千篇一律的层面。随着人工智能光学字符识别技术、自然语言处理技术、智能语音识别技术、要素提取技术和机器学习能力的提升,更高水平的人工智能司法亟待进一步推动,贯穿到公检法司司法全司法流程。司法系统与数据中心之间的数据通讯应采用光纤单向安全隔离数据自动导入系统,司法系统间的内部网络采用双向单向守门人方式构建安全通讯网络,基于安全网络建立互联互通共享的数据存储、管理和保护平台、便捷的交易处理平台、智能的法律分析平台、高效的司法执行平台、稳定的司法监督平台、广泛的法律服务平台。
2022 年 8 月 2 日 — 2022 财年支出法案削减了空军 AGM-183A 空射快速反应导弹的资金。武器。(Giancarlo Casem/美国空军)。