• 驻军的餐饮设施、单身宿舍、医院、药房和梅西百货不允许砍伐活树。• 当针叶或叶子开始容易脱落或叶子变黄时,请丢弃用于装饰的任何活绿色植物。对于活树,请选择一个可容纳至少一加仑水的坚固支架。• 将任何活的节日树放置在距离壁炉、散热器和其他热源至少三英尺的地方。• 睡觉或离开家之前关灯。• 每根延长线使用不超过三组标准尺寸的灯,并避免使用可能绊倒电线的区域。• 选择阻燃或阻燃的装饰品。• 安全第一!超过三分之一的家居装饰火灾是由蜡烛引起的,每五起装饰火灾中就有两起以上是因为装饰物离热源太近而发生的。
位置估计的准确性受能够提供相对目标测量值的传感器/信标数量的影响。虽然单个传感器/信标是最容易实现的系统,但必须进行多次测量才能确保位置信息的准确性。多个传感器/信标可以实现更及时的位置验证,但会增加系统复杂性。例如,传感器/信标的属性及其相对于目标物体的几何形状会影响系统的准确性。如果相同的传感器/信标太近,它们将提供几乎相同的信息,对知识库的补充很少。如果传感器/信标相距太远,可能会遗漏一些重要信息。因此,最佳传感器/信标间距介于这两个极端之间。本文将进一步探讨一种控制传感器/信标阵列几何形状的方法,以在实验期间保持最佳跟踪性能配置。
(17) 测深最有助于警告船只在驶入纽约港时离岸太近。许多船只在新泽西州和长岛海岸沉没,原因是在位置不确定时未能经常测深。深度比海底特征更能指示这部分海岸的位置,因为相同的特征可以在截然不同的位置找到。经常使用测深和仔细研究海图总能提供足够的危险警告。如果船只不确定自己的位置,则深度不应浅至长岛南岸火岛灯塔以东 15 英寻以下,或火岛灯塔和巴尼加特灯标 B(39°45'48"N.,73°46'04"W.)之间 11 英寻以下,或巴尼加特灯标 B 以南 9 英寻以下。
我与一个名叫Blanca的少年合作。她从不讲话,但她有效地使用PEC请求自己喜欢的东西。有时,Blanca会变得非常激动,并开始用手拍打她的头。如果您在搅动时与她站得太近,她会试图给您打耳光。我们想知道她是否只是不想做我们问的事情,或者她是否总是不了解对她说什么。我们安排给Blanca一组关于教室中常见项目的简单说明。她只收回了十件物品中的一个,几乎按照每条指示拍了拍头。然后,我们使用图片指导她有关相同的一组项目。当我们使用图片时,她不仅正确地检索了所有物品,而且在任何指示中都没有击中她的头。显然,与合规性问题相比,这种模式与理解问题更一致。
在定位和跟踪应用中,位置估计的准确性受到能够提供相对目标测量值的传感器/信标数量的影响。虽然单个传感器/信标是最容易实现的系统,但必须进行多次测量才能确保位置信息的准确性。多个传感器/信标可以实现更及时的位置验证,但会增加系统复杂性。例如,传感器/信标的属性及其相对于目标物体的几何形状会影响系统的准确性。如果相同的传感器/信标太近,它们将提供几乎相同的信息,对知识库的补充很少。如果传感器/信标相距太远,可能会遗漏一些重要信息。因此,最佳传感器/信标间距介于这两个极端之间。本文将进一步探讨一种控制传感器/信标阵列几何形状的方法,以在实验期间保持最佳跟踪性能配置。
磁共振成像 (MRI) 是一种重要的诊断方式,它利用强大的静磁场,可能会造成严重危害。铁磁物体被磁共振 (MR) 系统的孔径所吸引,这种潜在的强烈吸引力被称为导弹 (或射弹) 效应。当铁磁物体被放置在离扫描仪磁铁太近的地方时,磁场相互作用会变得非常强烈,以至于人力无法阻止。钢制气瓶和灭火器等物品可以以 30 到 40 英里/小时的速度进入磁铁,这与它们从 40 英尺高的建筑物掉落到地面时的速度相同。钢制气瓶在快速向磁铁移动时变成导弹,其获得的动能在撞击时消散。一个 15 磅重的气瓶作为射弹可能会严重伤害个人和/或严重损坏 MR 系统。
700 系列呼吸机系统符合 IEC 60601- 1-2(EMC 附属标准)的要求,其中包括 E 场敏感度和 ESD 要求。但是,即使设备符合标准中规定的抗扰度水平,某些传输设备(手机、对讲机、无绳电话、寻呼发射器等)也会发射无线电频率,如果距离呼吸机太近,可能会中断呼吸机运行。很难确定这些设备的场强何时过大。从业者应注意,无线电频率发射是累加的,呼吸机必须与传输设备保持足够远的距离,以避免中断。请勿在磁共振成像 (MRI) 环境中操作呼吸机。本手册的“警报处理”部分介绍了可能的呼吸机警报以及发生警报时应采取的措施。如果呼吸机运行中断,请在重新安置任何生命支持设备之前咨询您所在机构的生物医学工程部门。
实体对齐 (EA) 旨在匹配不同知识图谱 (KG) 中的相同实体。基于图神经网络的实体对齐方法在欧几里得空间中取得了良好的效果。然而,KG 通常包含复杂的局部和层次结构,难以在单个空间中表示。在本文中,我们提出了一种名为 UniEA 的新方法,它统一了双空间嵌入以保留 KG 的内在结构。具体而言,我们同时学习欧几里得空间和双曲空间中的图结构嵌入,以最大化两个空间中嵌入之间的一致性。此外,我们采用对比学习来减轻由相似实体引起的错位问题,其中相似相邻实体的嵌入变得太近。在基准数据集上进行的大量实验表明,我们的方法在基于结构的 EA 方法中实现了最佳性能。我们的代码可以在https://github.com/wonderCS1213/UniEA上找到。
摘要:飞机在航路上飞行时会发生并发事件情况(冲突情况),这种情况发生在它们在同一空域内飞行但在同一时间范围内彼此距离太近时。因此,它们之间的安全水平距离不小于标准的 5 海里。自由航路空域就是这样一个概念,当此类事件“热点”的位置和数量与固定航路(常规)空域相比是随机的时,需要解决此类并发事件。本文提出了两种通过执行水平解决机动来解决该区域交通冲突的方法。第一种方法使用 Dubins 轨迹,第二种方法使用三重航向变化 (3HC) 方法(针对两种角度)。除了保持安全距离外,我们还以冲突飞机的飞行路径延长为标准对它们进行了比较,因为飞行距离是决定飞行时间/延误以及燃料消耗和温室气体排放增加的主要因素。根据不同的数据,可能还有其他算法,可以通过进一步研究来确定。
⚫避免在玻璃门,玻璃墙或玻璃地板周围使用机器人。⚫避免在狭窄的空间中使用机器人(机器人可以自动避免椅子和桌子的高度为0.6〜0.8m)。⚫避免使用悬挂式悬挂较低的机器人(物体或装饰物应比机器人高500mm)。⚫避免使用有松动的电缆和软管的机器人。⚫避免在楼梯,步骤或高度差异> 5厘米的地方使用机器人。⚫避免在太狭窄的单车道过道中运行。⚫避免启动机器人太近的障碍物(建议将其保持在2m的半径内)。⚫避免在繁忙时期使用机器人。⚫此清洁机器人适合清洁以下地板材料:环氧地板,陶瓷瓷砖,大理石,木地板和其他硬地板。⚫此清洁机器人不适合清洁以下类型的垃圾:小颗粒和细灰尘;垃圾高于2厘米;软水⚫管道或松动的电线等。强行清洁上述垃圾的类型将对机器造成损坏。