摘要 背景 微染色体维持 (MCM) 复合物成分 2、4、5 和 6 与人类疾病有关,其表型包括小头畸形和智力障碍。MCM 复合物具有 DNA 解旋酶活性,因此对复制叉的起始和延长很重要,并在增殖的神经干细胞中高度表达。 方法 应用全外显子组测序来确定指数家族神经发育疾病的遗传原因。通过定量实时 PCR、原位杂交和免疫染色来表征 Mcm7 的表达模式。为了证明已鉴定的 MCM7 的致病性质,进行了原理验证实验。结果我们报告称,MCM7 中的纯合错义变异 c.793G>A/p.A265T(g.7:99695841C>T,NM_005916.4)与常染色体隐性原发性小头畸形 (MCPH)、严重智力障碍和行为异常有关,该病与三名受影响个体的近亲家系有关。我们发现小鼠中 Mcm7 的时空表达模式与增殖状态一致:Mcm7 在小鼠早期发育阶段和大脑增殖区表达较高。因此,与分化的神经元相比,Mcm7/MCM7 水平在未分化的小鼠胚胎干细胞和人类诱导多能干细胞中尤其可检测到。我们进一步证明,小鼠神经母细胞瘤细胞中 Mcm7 的下调会降低细胞活力和增殖,并且作为概念验证,野生型而非突变型 MCM7 的过度表达可以抵消这种影响。结论我们报告了 MCM7 突变是常染色体隐性 MCPH 和智力障碍的新原因,并强调了 MCM7 在神经系统发育中的重要作用。
案例报告社会福利与康复科学大学遗传学诊所的证据。概率具有HL的广泛家族史(图1),伴随着没有其他表型表现。获得知情同意后,从参与成员中收集全血样本,并提取基因组DNA(图1)。受影响的家庭成员接受了临床重新评估,以排除潜在的HL综合症综合症形式。对受影响的个体进行了纯音调测定法,并显示出轻度的倾斜到严重的HL。HL被描述为语言和进步。个体III.3在低频中显示出更严重的HL,并且可能随着年龄的增长而代表低频的某些进展。最初,概率进行了GJB2测试,该测试没有发现因果突变。随后,概率进行了外部测序(ES)以确定遗传原因
给定一个闭二维流形或曲面上的大小为 L 的环或更一般的 1-循环 r(用三角网格表示),计算拓扑学中的一个问题是它是否与零同源。我们在量子环境中构建和解决这个问题。给定一个可以用来查询闭曲线上边的包含情况的 oracle,我们设计了一个用于这种同源性检测的量子算法,相对于环 r 上边的大小或边数,其运行时间为常数,只需要使用一次 oracle。相比之下,经典算法需要使用 Ω( L ) oracle,然后进行线性时间处理,并且可以通过使用并行算法将其改进为对数时间。我们的量子算法可以扩展以检查两个闭环是否属于同一个同源类。此外,它可以应用于同伦检测中的一个特定问题,即检查闭二维流形上的两条曲线是否不是同伦等价的。
b.过载继电器应通过使用最先进的微电子封装技术提供高精度。继电器应适用于 NEMA 1 号至 7 号电机起动器。c. 过载继电器应采用模块化设计,是继电器系列的组成部分,可提供多种保护级别选择,可直接替换现有的机电过载继电器,并符合 UL 标准 508。 d. 过载继电器应具有以下特点: 1.自供电 2.10 级或 20 级固定跳闸特性 3.手动或自动复位 4.缺相保护。当继电器应用于满载电机时,在缺相条件下,继电器应在 2 秒或更短时间内跳闸 5.可见跳闸指示 6.一个常开和一个常闭隔离辅助触点 7.操作常闭触点的测试按钮 8.测试跳闸功能,可同时跳闸常开和常闭触点 9.电流调节范围为 3.2:1 或更大 10.环境温度补偿 11.接地故障保护。继电器应在满载安培设置的 50% 时跳闸 12.堵塞/失速保护。浪涌后,继电器应在满载安培设置的 400% 时跳闸
人类的手在动物界中独一无二,拥有无与伦比的灵活性,从复杂的抓握到精细的手指个体化。大脑如何表示如此多样化的动作?我们使用皮层脑电图和降维方法评估了人类“抓握网络”中尺度神经动力学,以了解一系列手部动作。令人惊讶的是,我们发现抓握网络同时表示手指和抓握动作。具体而言,表征多区域神经协方差结构的流形在该分布式网络的所有运动中都得以保留。相反,该流形中的潜在神经动力学令人惊讶地特定于运动类型。将潜在活动与运动学对齐可以进一步发现不同的子流形,尽管运动之间的关节协同耦合相似。因此,我们发现,尽管在分布式网络层面上保留了神经协方差,但中尺度动力学被划分为特定于运动的子流形;这种中尺度组织可能允许在一系列手部动作之间进行灵活切换。
人类的手在动物界中独一无二,拥有无与伦比的灵活性,从复杂的抓握到精细的手指个体化。大脑如何表示如此多样化的动作?我们使用皮层脑电图和降维方法评估了人类“抓握网络”中尺度神经动力学,以了解一系列手部动作。令人惊讶的是,我们发现抓握网络同时表示手指和抓握动作。具体而言,表征多区域神经协方差结构的流形在该分布式网络的所有运动中都得以保留。相反,该流形中的潜在神经动力学令人惊讶地特定于运动类型。将潜在活动与运动学对齐可以进一步发现不同的子流形,尽管运动之间的关节协同耦合相似。因此,我们发现,尽管在分布式网络层面上保留了神经协方差,但中尺度动力学被划分为特定于运动的子流形;这种中尺度组织可能允许在一系列手部动作之间进行灵活切换。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构及其任何雇员均不做任何明示或暗示的保证,也不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。