近期发生的 SARS、埃博拉和 COVID-19 等流行病和大流行病凸显了清洁和消毒对于减少我们这个高度互联世界中的疾病传播的重要性。在公共场所、工作场所和医疗环境中,消毒剂的使用频率特别高。对于医院和其他医疗机构而言,感染预防对于通过降低医院相关感染 (HAI) 的发生率来改善患者治疗效果至关重要。HAI 给美国医疗保健系统带来了沉重的负担(约 280-450 亿美元),每年影响 170 万患者。1,2 然而,设备和其他设备通常包含各种塑料部件,而这些设备与化学物质的接触又带来了额外的挑战——当今使用的许多材料并非设计用于承受这种常规清洁或所使用的各种消毒剂。很多时候,这种消毒的“新常态”会导致材料失效,这种现象称为环境应力开裂 (ESC)。
四个RNA靶标,SARS-COV-2 E-GENE(E-GENE),呼吸道合胞病毒(RSV),流感 - A(INF-A)和流感-B(INF-B),并用人类唾液扩增,在多重1- QPCR反应中与透明的透明型均衡型抑制剂策略(均匀的均匀抑制作用)中的人类唾液相结合(干燥(40°C 80分钟)。在20μl反应中使用了四个具有三个技术复制的模板稀释液(4000、400、40和4份)。每个反应中添加了与2.5%人类唾液相对应的通用转运培养基中1/10稀释的唾液1/10。循环条件为:47°C 10分钟,95°C 2分钟,然后是95°C的50个循环10 s,而60°C的50°C持续30 s。
摘要:由于在文献中众所周知,过渡金属可以形成极端硬化的碳化物并有效地增强材料的矩阵,因此最近添加了其中的一些,例如V,NB,CR,MO和W,以同时添加到铸铁中。此外,通常将CO添加到铸铁以增强材料的基质。然而,铸铁的耐磨性也可能受到C的添加,专家在文献中很少讨论。因此,在这项研究中研究了C含量(1.0; 1.5; 2.0 wt。%)对5 wt。%V/CR,MO,W和CO合金的磨料磨损行为的影响。根据磨砂颗粒,使用二氧化硅砂(1100 hv; 300 µm)的ASTM G65使用橡胶轮磨损测试机进行了评估。结果表明,在材料的微观结构上沉淀出复数碳化物(MC,M 2 C和M 7 C3),这与C的其他类型的碳化物的行为不同,因为C的数量增加。The hardness and wear resistance properties of 5V-5Cr-5Mo-5W-5Co-Fe and 5Nb-5Cr-5Mo-5W-5Co-Fe multicomponent cast alloys increased as the quantity of C increased.但是,我们观察到两种具有相同C添加的材料之间的硬度没有显着差异,而与VC相比,由于NBC的尺寸较大,与5V样品相比,5NB具有更好的磨损性特性。因此,可以确定,在这项研究中,碳化物的大小比其体积分数和硬度更重要。
每年将在不久的将来生产数十亿个一次性薄膜电子产品,用于智能包装,物联网和可穿戴生物监测贴片。在这些情况下,传统的刚性电池在形式和人体工程学方面也不是最佳的,也不是生态方面的。迫切需要使用薄,可拉伸,弹性且可回收的新型储能设备。在此,提出了一种新型的材料和制造技术结构,允许完全3D打印的软性薄膜电池对机械应变有弹性,如果可修复,可充电,可回收,并且可以在其寿命结束时回收。通过利用数字可打印的超易碎液态金属电流收集器和新型的镀具有镀碳碳阳极电极,AG 2 O-Gallium电池可快速打印并根据应用程序定制。通过优化镀具有耐碳碳复合材料的性能,获得了26.37 mAh cm-2的创纪录的面积容量,在100%应变时10个周期后改善了10.32 mAh cm-2,而前所未有的最大应变耐受性为≈200%。部分损坏的电池可以治愈自己。通过创新的冷蒸气刺激来治愈严重损坏的电池。一个用印刷传感器来监控心脏的数字印刷,泰勒制造的电池健康监控贴片的示例,并证明了呼吸。
计时器外围设备对于所有嵌入式设备至关重要[3]。微控制器单元(MCUS)的摄影师今天提供了大量的计时器模块,从通用物质到高度专业的组件。随着新兴的互联网(IoT),嵌入式控制者的设备,应用程序,应用程序和部署上下文的增加,数量和异质性增加了,对促进可移植性的声音硬件抽象的需求也是如此。嵌入式操作系统(OSS)是在物联网中开发可持续应用的普遍解决方案。越来越流行的嵌入式OS是Riot [1]。此开源OS明确针对低功率和资源约束的嵌入式设备。Riot提供了五个不同的低级计时器模块,它们的使用和功能可用性都不同。通过这项工作,我们想设计一个新的低级计时器界面,该接口统一了当前API并在此简化整个Riot生态系统中的计时器使用情况。我们从第2节中的计时器外围设备进行大规模分析开始,然后绘制低级计时器-API,该计时器API改进了现有的
项目任务表演者在相关任务或子任务标题下得到确认。我们感谢通用电气全球研究中心,詹姆斯·塔尔曼(James Tallman)博士,纳文扬·蒂亚加拉扬(Naveenan Thiagarajan),道格·霍弗(Doug Hofer)博士和Ching-Jen Tang博士的贡献。其他开发贡献者包括帕特里克·达文波特先生,杰弗里·吉福德先生,科里·库克博士和詹娜·马丁内克博士(NREL);亚伦·莫里斯(Aaron Morris)教授和杰森·史克克(Jason Schirck)博士(普渡大学); Ruichong Zhang教授和Xingchao Wang博士(科罗拉多州矿业学校);马修·兰伯特先生(Allied Mineral Products);托马斯·弗林先生和蒂莫西·A·富勒先生(Babcock&Wilcox)。我们感谢Ryan Bowers先生(Worley-Advisian)参与该项目。作者感谢NREL通讯办公室的以下同事:Susannah Shoemaker,Deanna Cook,Patrick Hayes和Star Brunton。我们还要感谢NREL的Mark Mehos为项目开发和审查该报告提供建议。
虽然Li-空气可充电电池比锂离子电池提供更高的能量密度,但在放电后迅速,有效的重新充电期间形成的绝缘Li 2 O 2。氧化还原介质用于促进Li 2 O 2氧化,但是,对于实际应用,在低充电电压下的快速动力学是必不可少的,但尚未实现。我们研究了氧化还原介质的Li 2 O 2氧化的机理。限制步骤是li 2 o 2 to lio 2的外球1 E-氧化,遵循Marcus理论。第二步是由LIO 2违约的主导,主要形成三胞胎O 2。与早期观点相比,单链o 2的产率O 2的产量取决于与电解质降解无关的方式。我们的机械理解解释了为什么当前的低压介体(<+3.3 V)无法提供高率(最大速率为+3.74 V),并提出了重要的调解员设计策略,以提供足够高的速率,以便在接近LI 2 O 2 O 2 O 2 O 2氧化(+2.96 V)的热力学潜力的快速收费中提供足够的快速充电(+2.96 V)。
摘要:由于发电显着促进了全球温室气体的排放,因此达到了2015年巴黎协议,而2021年格拉斯哥气候条约则需要迅速过渡到零或低排放电网。尽管基于可再生能源的发电机的安装(主要是风和太阳能系统)在全球范围内加速,但需要泵存储水电等电气存储系统,以平衡其与天气相关的输出。本文的作者是第一个研究24个PACIIFIF RIM经济体中抽水水电开发的状态和潜力(亚洲经济合作的21个成员经济体以及柬埔寨,Lao PDR和缅甸)。我们表明,在24个目标经济体中,泵储存水电潜力的195倍,这是支持100%基于可再生能源的电网所需的。进一步发挥了电源储能潜力,我们表明,抽水的水电是一种低成本的低成本,低绿色的宿舍发射电源存储技术,可以被认为并设计为具有最小的负面(或在某些情况下是积极的)社会影响(例如,重新定位的要求,对农场和耕种和环境的影响和环境效果(E.G)和环境效果(E.G)。通过这种方式,精心设计和使用的抽水储存水力发电的优势可以有效地解决围绕常规水电开发的社会和环境影响的持续冲突。由于泵储存水力发电的电气能源存储的潜力很高,因此只有低负(或积极)的社会和环境影响的地点,例如棕色场站点和闭环PSH开发项目(在两个储层之间来回移动水,因此需要最小的自然水文学)才能开发出对零或低碳值或低碳值的过渡。注意到国际水力发电协会倡导抽水储存水电的倡导,我们就抽水储存水电如何可持续减少电力部门温室气体的排放,包括通过市场改革来鼓励投资和应用标准以避免和减轻环境和社会影响。