正如基地人口分阶段进入空置基地一样,支持人口和飞机所需的设施和公用设施资产也是预先确定的,并逐步流动。如果没有这种预先规划和资产排序,工程师们将有飞机装载的设备停在坡道上等待分类,然后才能开始任何有意义的停放或支援战斗出击。为了应对这一挑战,工程师和后勤人员使用资产管理系统,如基本远征机场资源 (BEAR) 和 BEAR 战斗序列来管理这些关键资源。从历史上看,停放地点会以整套“套装”的形式接收设备,尽管每个地点都有不同的需求。有了 BEAR 战斗序列优先级排序,规划人员就可以从一系列功能中进行选择,因为大多数或所有 BOB UTC 都将是“剧本”选项。当部队和资产基于大型模块呈现时,通常需要修剪或定制人员和物资以满足实际需求。与以前的传统和 BEAR 套装相比,以这种方式呈现功能有助于减少整体工程师和后勤足迹。指挥官现在可以只使用完成任务所需的那些功能。动态定位涉及加快资产部署和移动以满足作战指挥官要求的规划。资产可以进行战略性和全球性定位,以支持空军要求以及国际、联合服务和联盟努力。传统资产面临的主要挑战之一是严重依赖有限的空运资源。借助 BOB,规划人员可以拥有灵活的运输配置,资产可以通过一系列空中、陆地和海上选项高效地打包、运输和交付。模块化/可扩展的 UTC 不需要定制,这是战斗序列的重要特征。BOB 构建最小的可行人员和设备结构,为所有部署位置提供基线能力水平。然后可以逐步增加基线以满足特定位置或任务的要求。
信号战发展项目 DL-12 提供了一系列集成的地面和直升机情报和电子战通用传感器系统。地面通用传感器 (GBCS) 是一种拦截和发射器定位系统。它为师指挥官提供了搜索、拦截、监听、精确定位的能力,以便通过电子攻击、威胁指挥和控制以及火控通信网络进行硬杀伤或战斗序列解决,或使其失效。它还可以识别和精确定位威胁反迫击炮和反炮台地面监视雷达发射,识别敌方常规和低截获概率 (LPI) 通信和非通信发射器,并干扰敌方常规和 LPI 通信发射器。
国防部专用的四种作战系统分别是非实时(例如情报分析、后勤);实时(例如联网武器);后端(例如战斗序列);以及能力开发(例如战争游戏、建模和模拟);但是,商业 API 生态系统,例如业务系统(例如薪水);社交网络(例如 SIPR 聊天、其他 ChatOps);传输系统(例如 Link 16);或其他框架(例如全球信息网格)也部分在范围内。每个这样的系统都包含一个或多个与其他系统连接的开放或专有 API 套接字接口。API 的未来设计范围包括四个国防部系统,部分包括四个商业系统。将来,除了专有 API 之外,为国防部开发或由国防部使用的任何 API 都将被视为在范围内。
1985 年之前,缅甸武装部队(Tatmadaw)面临诸多问题。其主要武器和武器平台陈旧过时,后勤和通讯系统薄弱,由于缺乏基本物资,其行动经常受阻。虽然它可以平息国内政治动乱并开展有限的反叛乱运动,但它缺乏资源来执行大多数常规防御任务。1988 年执政后,国家法律和秩序恢复委员会启动了一项雄心勃勃的计划,以扩大和现代化武装部队。从那时起,Tatmadaw 的规模几乎翻了一番,并获得了大量新武器和装备,其中大部分来自中国。然而,这种快速扩张给武装部队带来了相当大的压力,缅甸的战斗序列扩张后,军事能力的相应提高还需要一段时间。此外,Tatmadaw 持续的政治角色和缺乏民众支持,对其专业性和未来的凝聚力提出了严重质疑。
MACE(现代空战环境)是一种基于物理的全频谱计算机生成/半自动化部队 (CGF/SAF) 应用程序,具有庞大且用户可扩展的战斗序列,能够进行多对多模拟,同时在交战级别具有非常高的保真度。MACE 可以模拟先进的第五代系统,包括低可观测平台和有源和无源电子扫描阵列 (AESA 和 PESA 雷达) 以及高度竞争的战场。MACE 支持分布式交互式模拟 (DIS) 架构,包括模拟管理、实体状态、火灾、爆炸和排放 PDU。MACE 非常适合独立场景创建/任务演练和分布式任务模拟。MACE 已获得美国空军分布式任务操作网络 (DMON) 的使用认证,并且是作战空军分布式任务操作 (CAF DMO) 批准的 CGF/SAF。
军事场景,也称为作战场景,通常使用不同的方式和领域特定术语来定义,这些术语主要不表达作战背景。可执行场景是机器可读的文件,用于设置模拟环境的组件。它们是定制的(地形、战斗序列、任务组织等),以允许技术架构中涉及的不同组件执行场景。概念场景弥合了作战场景和可执行场景之间的差距,并提供了场景描述,可以提高重用性,便于 SME 和建模与仿真(M&S 专家)理解,解决歧义并更好地掌握互操作性。本文重点介绍了法国陆军总司令部 (DGA) 自 2015 年以来为推进从系统工程到模拟的过渡而进行的几项经验。在 MSG-086“模拟互操作性”框架下发起的情景开发指南 (GSD) 方法为阐明如何使用北约架构框架 (NAF) 表达概念情景提供了基础。这首先在名为“大胆探索”的国际作战演习的准备过程中进行了评估。由于情景描述明确,能够满足作战需求,因此致力于检查其与空中、地面和海上情景的相关性。为此
在《航空航天》付印之际,美国国会即将举行半个世纪以来首次关于不明飞行物的公开听证会——这表明官方思维从“外星人阴谋”的搞笑因素转变为值得认真调查的航空航天问题——以及对飞行安全的潜在风险。这一转变的动机是美国海军超级大黄蜂 FLIR 镜头、可靠的机组人员目击者证词和美国东西海岸的雷达轨迹被解密——五角大楼于 2020 年公布了 FLIR 视频。例如,一些人认为美国海军的遭遇是敌方间谍无人机,目的是了解美国航母战斗群的电子战斗序列。然而,如果看到的物体是无人机,那么母舰(或潜艇)一定在附近发射它们,并且它们的 ELINT 收集传输被下行链路或以其他方式返回给其所有者。相反,如果这些是来自另一个星球的访客,他们正在密切关注超级大国的最新军事技术,那么人们可能会问,为什么战斗机飞行员没有在内华达州靶场、51 区试验区周围和红旗军演中看到类似的现象,美国也在那里测试其最新的奇异机密军事技术。有些人可能会争辩说,即使只是提到 UFO/UAP 也不应该出现在 RAeS 的出版物中,但美国高层官方政策的这种文化转变,特别是在这些是否代表对手威胁或对飞行安全构成威胁方面,意味着政客、决策者和媒体
摘要:模拟在陆军训练中发挥着不可或缺的作用,它使士兵能够体验一定程度的战斗环境的真实性,而不会对自己构成风险。然而,标准的陆军模拟不包括产生电磁战斗序列 (EOB) 的能力,因为它们目前缺乏已建立的电磁频谱 (EMS) 层。EOB 显示已知和假定的 EMS 相关资产及其对战场的潜在影响。因此,EOB 将成为规划、准备、执行和评估作战行动(包括电磁战 (EW))的重要工具,这将在未来战争中发挥重要作用。本研究使用基于模型的系统工程方法来推导 EOB 纳入陆军训练模拟的要求。研究从审查有关 EW 的理论开始,研究参谋人员在计划、准备和执行 EW 活动时执行的操作。该理论发现 EOB 需要三个主要组件——EMS 数据假设、EMS 映射和 EOB 叠加。EMS 数据假设填补了模拟中有关 EMS 的信息空白。然后,EMS 映射和 EOB 叠加将 EMS 转换为可在指挥所软件上查看的叠加,使工作人员能够开展 EW 操作。该分析得出了陆军成功训练 EW 操作所必需的每个组件的要求。关键词:战斗模拟、电磁战、陆军
军事场景,也称为作战场景,通常使用不同的方式和领域特定术语来定义,这些术语主要不表达作战背景。可执行场景是机器可读的文件,用于设置模拟环境的组件。它们是定制的(地形、战斗序列、任务组织等),以允许技术架构中涉及的不同组件执行场景。概念场景弥合了作战场景和可执行场景之间的差距,并提供了场景描述,可以提高重用性,便于 SME 和建模与仿真(M&S 专家)理解,解决歧义并更好地掌握互操作性。本文重点介绍了法国陆军总司令部 (DGA) 自 2015 年以来为推进从系统工程到模拟的过渡而进行的几项经验。在 MSG-086“模拟互操作性”框架下发起的场景开发指南 (GSD) 方法为阐明如何使用北约架构框架 (NAF) 表达概念场景奠定了基础。这首先在国际作战演习“Bold Quest”的准备过程中进行了评估。由于场景描述明确,能够满足作战需求,因此致力于检查其与空中、地面和海上场景的相关性。为此,定义了一个名为“TRITON”的场景,适当的 NAF Views 证明采用这种方法对任何类型的场景都是有效的。概念场景描述是操作场景和可执行场景之间的桥梁,MSG-145“标准化 C2 模拟互操作性的操作化”决定试验这种方法,以掌握系统互操作性,目标是提供合适的 C2SIM 扩展。这导致了一项涉及战术数据链 (TDL) 参与者(真实和模拟)的实验,他们在场景执行期间需要交换作战信息。这些好处促使 DGA 开发了一套指南,用于在基于模拟的环境中掌握互操作性,无论标准是什么。它建议应用 GSD 方法并使用 NAF 视图来描述概念场景。如今,当前的工作是基于标准化场景描述来自动设置和执行模拟。这是真正利用整体方法的关键挑战。