摘要:Lini 0.5 Mn 1.5 O 4(LNMO)阴极的长期电化学循环寿命(LES)(LES)和对细胞衰竭机制的知识不足是雄辩的致命弱点对实际应用的雄辩,尽管它们具有较大的承诺,可以降低lithium-ion Batteries的成本(Libs)。在此,提出了一种工程的工程策略-LE界面以增强LIBS的循环寿命。通过简单的slot-slot-die coating,通过离子 - 电子(Ambiall)混合陶瓷 - 聚合物 - 聚合物电解质(IECHP)将阴极活性颗粒与LE之间的直接接触通过将溶胶 - 凝胶合成截短的八面体形的LNMO颗粒封装。IECHP覆盖的LNMO阴极显示出250个循环的能力逐渐衰减,1000次充电循环后的容量降低了约90%,显着超过了未涂层的LNMO阴极的能力(在980个周期后的〜57%)中,在1 m lipf 6中,ec in in 1 m lipf 6 in 1 m lipf 6 in in 1 m lipf 6 in in 1 c in in 1 cy n in 1 m lipf 6 in in ec:Dmc:通过聚焦离子束扫描电子显微镜和飞行飞行时间二级离子质谱法检查了两种类型的阴极之间的稳定性差异。这些研究表明,原始的LNMO在阴极表面产生不活动层,从而减少了阴极和电解质之间的离子转运,并增加了界面电阻。IECHP涂层成功克服了这些局限性。因此,目前的工作强调了IECHP涂层的LNMO作为1 M LIPF 6电解质中的高压阴极材料的适应性,以延长使用。拟议的策略对于商业应用来说是简单且负担得起的。
CRISPR 干扰 (CRISPRi) 是一种在哺乳动物细胞中沉默基因的高效方法,它采用酶失活形式的 Cas9 (dCas9) 与一个或多个与靶基因转录起始位点互补 20 个核苷酸 (nt) 的向导 RNA (gRNA) 复合。此类 gRNA/dCas9 复合物与 DNA 结合,阻碍目标基因座的转录。在这里,我们提出了一种替代的基因抑制策略,即使用活性 Cas9 与截短的 gRNA (tgRNA) 复合。Cas9/tgRNA 复合物与特定靶位点结合而不会触发 DNA 切割。当靶向转录起始位点附近时,这些短的 14-15 nts tgRNA 可有效抑制果蝇体细胞组织中几种靶基因的表达,而不会产生任何可检测到的靶位点突变。 tgRNA 在与 Cas9-VPR 融合蛋白复合时还可以激活靶基因表达或调节增强子活性,并且可以整合到基因驱动中,其中传统 gRNA 维持驱动,而 tgRNA 抑制靶基因表达。
PTEN 诱导激酶 I (PINK1) 突变会导致人类早发性帕金森病 (PD),并伴有选择性神经退行性病变。然而,目前 PINK1 基因敲除的小鼠和猪模型无法重现 PD 患者中观察到的典型神经退行性表型。这表明,在非人类灵长类动物 (NHP) 中生成与人类相近的 PINK1 疾病模型对于研究 PINK1 在灵长类动物大脑中的独特功能至关重要。配对单向导 RNA (sgRNA)/Cas9-D10A 切口酶和截短的 sgRNA/Cas9 均可以减少脱靶效应而不影响靶向编辑,是 CRISPR/Cas9 系统中用于建立疾病动物模型的两种优化策略。在这里,我们结合了这两种策略,将Cas9-D10A mRNA和两个截短的sgRNA注射到单细胞阶段的食蟹猴受精卵中,以靶向PINK1基因。我们实现了精准、高效的基因
。CC-BY-NC-ND 4.0 国际许可 它是根据作者/资助者提供的,他已授予 medRxiv 永久展示预印本的许可。(未经同行评审认证)