摘要:在这项研究中,我们研究了人工神经网络作为一种潜在有效方法,以确定具有不同孔隙率的锂离子电池电极的速率能力。锂离子电池的性能在很大程度上取决于其电极的Mi-Crasstructure(即层厚度和孔隙率)。将微观结构定制到特定应用程序是电池开发的关键过程。然而,使用实验或模拟的微观结构和速率性能之间的复杂相关性是耗时且昂贵的。我们的方法提供了一种快速的方法,可以通过在电极横截面的微观结构图像上使用机器学习来预测电池电极的速率。我们训练多个模型,以根据Bateries的微观结构来预测特定能力,并通过使用可解释的人工智能(XAI)方法来研究微观结构的决定性部分。我们的研究表明,即使是相对小的神经网络架构也能够提供最新的预测结果。除此之外,我们的XAI研究表明,这些模型在忽略当前的人工制品的同时使用了易于理解的人类特征。
图 29 (a) 每个 I/O 电阻测量的开尔文结构;(b) 键合铜柱的 SEM 横截面 ......................................................................................................... 44 图 30 带 Ru 封盖的 Cu-Cu 键合测试台 ............................................................................. 45 图 31 铜上钌的沉积过程 ............................................................................................. 45 图 32 30 分钟 FGA(合成气体退火)退火后表面 Cu 和 Ru 的百分比 [98] ............................................................................................................. 46 图 33 450°C FGA 退火后,带有针孔的 Ru 表面上的扩散 Cu ............................................................................. 47 图 34 用于研究填充的测试台制造流程 ......................................................................................... 49 (b) 使用 Keyence 7000 显微镜对集成结构进行的顶视图,描绘了顶部芯片上的通孔密度 ............................................................................................................................. 50 图 36 (a) 200 次循环氧化铝 ALD 后扫描 EDX 映射区域的 SEM 图像;(b) 集成结构的顶视图,突出显示了填充覆盖研究区域;(c) EDX 映射结果描绘了铝和氧 pe 的区域 ............................................................................................................................. 51 图 37 200 次循环氧化铝 ALD 后脱粘底部芯片的 FIB 横截面描绘 ............................................................................................................................. 52 图 38 (a) 200 次循环真空清除 ALD 后 EDX 研究的不同区域 - 底部芯片正下方通孔区域(区域 A)、距最近通孔 300 µm 的区域(区域 B)、靠近边缘的区域(区域 C); (b) 三个 r 中的 Al/Si 比率 ...................................................................................................................................... 52 图 39 (a) 集成结构的对角线切割;(b) 描绘平滑填充区域和无填充的受损区域后集成结构横截面的近视图;(c) 描绘填充高达 300 µm 的横截面的未放大图像 ............................................................................................. 54 图 40 (a) ZIF-8 MOF 化学和结构;(b) 示意图表示 ALD ZnO 和转化为气相沉积 MOF,体积膨胀和间隙填充约为 10-15 倍。 ........................................................................................................................................... 56 图 41 在完全填充芯片到基板间隙后,距离最近通孔 300 µm 的集成结构横截面的 EDX 映射.............................................................................57 图 42 横截面的 SEM 图像显示抛光模具未渗透到通孔和芯片与基板的间隙中,从而使上述结果可信 ............................................................................................. 58 图 43 (a) 测试台示意图,顶部芯片具有通孔 Cu-Cu 键合到底部基板;(b) Cu-Cu 键合测试结构的 SEM 横截面(面 A);(c) 键合前顶部芯片表面的铜垫/柱(面 B);(d) 键合前底部芯片表面的带有金属走线的铜柱(面 C) ............................................................................................................................. 59 图 44 20 nm ZnO ALD 后脱键合的底部芯片概览;(b) 通孔下方未沉积填充的区域 ............................................................................................................. 60 图 45 顶部芯片靠近通孔的区域,显示扩散半径为 (a) 572 µm,通孔直径为 240 µm; (b) 75 µm 直径通孔的 364 µm .............................................................. 61 图 46 20 nm ZnO ALD 后的脱粘底部芯片概览,a) 脉冲时间 250 ms 和温度 150°C;(b) 脉冲时间 1 秒和温度 150°C ................................................................................ 62 图 47 反向混合键合的工艺顺序 ............................................................................................. 63 图 48 (a) 1 个 MOF 循环后脱粘底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表明已完全渗透............................................................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样,显示了 500 nm MOF ............................................................................................................................................. 65 图 50 (a) 5 个 MOF 填充循环后脱粘底部芯片的概览;(b)62 图 47 反向混合键合的工艺顺序 .......................................................................................... 63 图 48 (a) 经过 1 个 MOF 循环后,脱键合底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表示完全渗透............................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样显示了 500 nm MOF ............................................................................................................................. 65 图 50 (a) 经过 5 个 MOF 填充循环后,脱键合底部芯片的概览;(b)62 图 47 反向混合键合的工艺顺序 .......................................................................................... 63 图 48 (a) 经过 1 个 MOF 循环后,脱键合底部芯片的概览;(b) 在底部芯片中间观察到的 MOF 晶粒表示完全渗透............................................................................. 64 图 49 靠近底部基板中心的 FIB 横截面,如预期的那样显示了 500 nm MOF ............................................................................................................................. 65 图 50 (a) 经过 5 个 MOF 填充循环后,脱键合底部芯片的概览;(b)
营养不良肌肉中的病理过程包括明显的变性和肌肉纤维的再生。这些过程可以通过测量肌肉纤维的直径以及确定具有集中核的肌肉纤维的比例(指示肌肉再生)。所描述的方法依赖于通过使用肌肉纤维横截面的最小“ FERET直径”来说明肌肉纤维尺寸的确定。与肌肉纤维尺寸的其他形态计量参数不同,最小的“ Feret直径”在实验误差(例如截面角的方向)上非常健壮。此外,在一组代表性的肌肉中,最小的“ FERET直径”可靠地区分营养不良和正常表型。如果不可能评估最小的“ Feret直径”,则建议提出替代参数。此外,将集中核的百分比确定为指示营养不良肌肉再生的量度。一旦可以使用整个肌肉的数字图像,就可以轻松实现其他测量参数(例如总肌肉横截面区域)。与其他染色程序结合使用,可以通过对系统进行少量修改来评估其他病理参数(例如坏死区,巨噬细胞浸润等。)。
摘要:本文介绍了一种使用依赖于温度和接触压力的可变摩擦系数对飞机轮胎与粗糙表面接触进行数值模拟的方法。使用滑动装置来评估摩擦系数的这种依赖性。通过热电偶测量整个轮胎横截面的温度扩散。将摩擦生热和温度扩散与数值二维和三维模拟进行了比较。可以获得足够的温度预测。在未来的模拟中,应考虑磨损,以便进行更准确的模拟,特别是在高压和滑动速度的情况下。使用依赖于温度和压力的可变摩擦系数研究了速度为 37.79 节(19.44 米/秒)并处于转弯阶段的滚动轮胎的 3D 有限元模型。数值模拟倾向于预测轮胎胎面在打滑位置滚动几秒钟后的温度,接触区的温度升高到 140 ◦ C。必须进行进一步调查才能获得实验观察到的温度变化。作者想指出,出于保密原因,某些数值数据不能透露。
本文研究了吹粉激光熔覆(一种定向能量沉积技术)中的粉末收集效率。对标准的“逐道重叠”熔覆(“ AAA ”熔覆)和“ ABA ”熔覆进行了比较,其中初始一组间距较大的轨道(“ A ”轨道)之间留下的间隙由后续的“ B ”轨道填充。在这两种技术中,熔池表面是熔覆粉末的收集区域,并且该池的形状会受到多种参数的影响,包括熔覆速度、轨道间距和熔覆技术类型。这里给出的结果来自于对加工过程中拍摄的高速视频和所得熔覆轨道的横截面的分析。结果表明,AAA 熔覆中的第一个轨道与后续轨道具有不同的熔池形状,并且后续轨道熔池的不对称导致粉末收集效率降低。与此相反,“B”轨道熔池与其相邻的“A”轨道之间的几何形状可提高粉末收集效率。
毛细作用可用于将各向异性胶体粒子引导到精确位置,并通过使用界面曲率作为施加场来定向它们。我们在实验中展示了这一点,在实验中,界面的形状通过钉扎到不同横截面的垂直柱上而形成。这些界面呈现出明确定义的曲率场,可沿复杂轨迹定向和引导粒子。轨迹和方向由理论模型预测,其中毛细作用力和扭矩与高斯曲率梯度和与曲率主方向的角度偏差有关。界面曲率在尖锐边界附近发散,类似于尖锐导体附近的电场。我们利用这一特性在优选位置诱导迁移和组装,并创建复杂结构。我们还报告了一种排斥相互作用,其中微粒沿曲率梯度轮廓远离平面边界壁。这些现象在微粒子和纳米粒子的定向组装中具有广泛的用途,在制造具有可调机械或电子性能的材料、乳液生产和封装方面有潜在的应用。
通过稳定的原子级精确表面实现二维电子态的实现,进一步激发了人们对低维固体的研究,这种固体可以承载接近单链状态的高度受限的一维状态。在目前建立的二维范德华晶体中,一维电子态或光学态通常通过带有底层一维基序的二维晶格(如磷烯)获得,8,9 或者通过自下而上的路线,通过基底和生长工程破坏平面内共价键的形成,10,11 催化 VLS 生长,12-14 人工台阶边缘,15 或在碳纳米管内部生长,从而引导过渡金属二硫属化物晶格生长成其一维对应物。 16 由于其结构类似于二维范德华晶体,由亚纳米厚的一维或准一维(q-1D,指具有非各向同性横截面的链状结构)链通过弱范德华力结合在一起的结晶相已成为最近关注的主题,作为通往低维固体的替代途径。17 – 22 保持
抽象有效的库存管理技术对于优化供应链中商品流动至关重要。本研究旨在确定过程创新对库存管理技术和供应链效率之间关系的调节作用。本研究使用了一种调查方法。收集的数据是横截面的,这意味着它是在一个时间点收集的。供应商关系管理对供应绩效有很大的积极影响。此外,员工承诺积极,并显着影响供应绩效。但是,员工承诺对供应商关系管理与供应绩效之间关系的影响在统计学上没有意义。有效实施时,库存管理技术可以看作是特定组织的独特资源。本研究旨在通过提供有关库存管理技术,过程创新和供应链效率的相互依存关系的经验证据来为现有的知识体系做出贡献。关键字:库存管理技术,供应链效率,过程创新引用:Ofori。I.,aidoo-acquah。K.,Addo,K。S.,(2024),“库存管理技术对供应链效率的影响。过程创新的调节作用”,《非洲采购,物流与供应链管理杂志》,2024,7(8):pp.01-12。
Higgs玻色子生产时间衰减速率和差异横截面的测量最近通过Atlas实验在几个衰减通道中使用了多达139 fb-1的proton-Proton碰撞数据,该衰减通道在大型Hastron Collider处记录了Proton-Proton碰撞数据的139 Fb-1。本文介绍了这些希格斯玻色子测量的多种解释。根据标准模型有效的现场理论运算符的影响,对不同衰减通道中的生产模式横截面,简化模板横截面和基准差异横截面进行了测量,并报告了对相应的Wilson系数的约束。的生产和衰减率测量值在标准模型的UV完全扩展中进行解释,即在对齐限制限制附近的两种型二键型模型(2HDM)和各种MSSM基准标准场景的最小超对称标准模型(MSSM)。2HDM参数(cos(cos(𝛽 -𝛼),tan 𝛽)和MSSM参数(tan 𝛽,tan𝛽)的约束与直接搜索其他Higgs玻色子获得的约束是互补的。
摘要本文着重于通过实施无用的隔离Zeta-LuO转换器来增强电动汽车(EV)充电器的功率因数。功率因数差是常规充电系统的共同特征,它可以提高能量损失并降低效率。解决现代世界中与运输相关的碳氢化合物排放所代表的严重环境问题至关重要。电动汽车采用蒸汽作为促进环保运输的一种手段。DC-DC转换器是这些汽车的重要组成部分,因为它有助于有效地向辅助系统分发功率。它通过确保在不同电压级别运行的系统之间有效地传输能量,从而确保了不同车辆截面的平稳运行。拟议的转换器旨在通过采用无用的拓扑和Zeta-Luo配置来解决此问题,从而确保提高功率因数校正和有效的能量传递。隔离功能在保持紧凑的设计的同时增强了安全性。通过详细的分析,模拟,本文旨在证明拟议解决方案在优化电动电动机电源的功率因数和整体性能方面的有效性,从而有助于发展可持续和有效的电力运输基础设施。