图1。光转传成分基因家族和真核生物中的分布的进化史。重建了所有常见(a),横幅特异性(b)和睫状特异性(c)成分的每个基因家族的演变(每个部分顶部的基因树),并且它们的分布均映射在eukarya的主要群体中(每个部分左侧的物种树)。的存在用一个完全彩色的圆表示。在每个基因家族中,含有D. melanogaster(红色),H。sapiens(绿色)或(蓝色)基因(S)在光转传途径中起作用的(蓝色)基因(S)的感兴趣的亚家族。在几个基因家族中,根据系统发育,某些注释较差的序列与感兴趣的群体非常遥远。这些进化枝被标记为“不确定”。实际上,它们可以代表基因家族的真正相关成员,因为它们是在数据挖掘过程中检索并在管道期间保留的。但是,不能排除他们宁愿属于另一个基因家族。
常染色体隐性肢带型肌营养不良症 21 (LGMDR21) 是由蛋白质 O-葡萄糖基转移酶 1 (POGLUT1) 的致病变异引起的,该酶负责对 50 种哺乳动物蛋白质(包括 Notch 受体)中发现的特定表皮生长因子 (EGF) 重复序列进行 O-糖基化。先前的患者活检数据表明,Notch 信号传导受损、肌肉干细胞减少和分化加速可能与疾病病因有关。使用患者诱导的多能干细胞 (iPSC)、其校正同种型和对照 iPSC,基因表达谱分析表明 POGLUT1、NOTCH、肌肉发育、细胞外基质 (ECM)、细胞粘附和迁移的失调是相关通路。它们还表现出体外 POGLUT1 酶活性和 NOTCH 信号传导降低以及肌肉生成、增殖、迁移和分化缺陷。此外,体内研究表明植入、肌肉干细胞形成、PAX7 表达和维持显著减少,同时间质中错误定位的 PAX7 + 细胞百分比增加。使用 CRISPR-Cas9 切口酶对患者 iPSC 进行基因校正可挽救主要的体外和体内表型。这些结果证明了 iPSC 和基因校正在疾病建模和表型挽救中的功效,并提供了肌肉干细胞生态位定位、PAX7 表达和细胞迁移作为 LGMDR21 的可能机制参与的证据。
在过去十年中,全球管理委员会一直在地方和城市地区层面制定共享领导和交付安排,并由必要的政治问责制支持,以实现公共财政的重大下放。我们的地方拥有大量集中预算和共享问责安排,涵盖健康和护理——我们需要通过预防示范进一步发展这一点,包括其他公共服务。6 在推动人口健康改善方面的记录