量子计算提供了全息算法的灵感[37],进而启发了用于计算计数问题的Holant框架(在[18]的Conforence版本中首次引入)。计算计数问题包括各种计算问题,从图表上定义的组合问题到量子计算中统计物理学和计算幅度中计算部分函数的问题。它们正在不同的框架中进行分析,包括计算约束满意度问题(计数CSP)和Holant问题的框架。计算计数问题是一个积极研究的领域,但到目前为止,似乎没有尝试将量子信息理论或量子计算中的知识应用于其分析。尽管如此,如下所示,量子信息理论,尤其是量子纠缠的理论,也是对Holant问题的研究的新途径。通过一组函数f参数化了一个holant问题;在本文中,我们考虑了布尔输入的有限代数复合物值函数。限制到有限的设置,即计数CSP社区中的标准。我们使用它来避免在有限的功能集中允许问题进行参数时出现的有效可计算性的问题。在以下内容中,布尔输入的所有代数复合物值函数的集合表示为υ。我们还写入∂n:= {f∈υ| Arity(f)= n}限制了Arity n功能的限制。此地图分配给每个顶点v∈Va函数π(v)= fv∈F。问题的实例Holant(F)由一个多数G =(V,E)组成,带有顶点V和边缘E,以及MAPπ。该地图还设置了V和F V的参数的边缘之间的两次试验,因此V的程度必须等于f V的arity。给定地图π,任何分配σ:e→{0,1}布尔值的边缘诱导重量
⯡䛻䠈≉ᐃ䛾䝍䝇䜽䜢ᐇ⾜䛩䜛䛸䛔䛖ᙺ䜢䛘䜙䜜䠈䛭䜜䜢ᐇ ⾜䛩䜛䜒䛾䛷䛒䜛䛛䜙䠈 responsibility 䜢ᯝ䛯䛩䜒䛾䛷䛒䜛䛸ゝ䛘 䜛䠊䛭䜜䛻ᑐ䛧䛶䠈 accountability 䛿ேᕤ䝅䝇䝔䝮䛻䛿ᮇᚅ䛥䜜 䛶䜒䛔䛺䛔䛧䠈ᯝ䛯䛥䛺䛔䛸䛔䛖䛾䛜⌧≧䛷䛒䜛䛸ゝ䛘䜛䠊 ᮏㄽᩥ䛷䛿䠈௨ୖ䛾ព䛷䛾 accountability 䠄ㄝ᫂㈐௵䠅䜢 ᣢ䛱䛖䜛 AI 䜶䞊䝆䜵䞁䝖䜢ᵓ⠏䛧䠈䛭䜜䛜♫䛻ཷ䛡ධ䜜䜙䜜 䜛䠄㈐௵䜢ᯝ䛯䛩䛣䛸䜢ᮇᚅ䛥䜜䜛䠅䛣䛸䛜䛒䜚䛘䜛䛛䛻䛴䛔䛶㆟ ㄽ䛩䜛䠊 [High Level Expert Group on Artificial Intelligence 19] 䛻䜘䜛 䛸䠈 accountability 䠄ㄝ᫂㈐௵䠅䛻㛵䛧䛶⪃៖䛩䜉䛝ほⅬ䛸䛧䛶௨ ୗ䛾䠐䛴䛜ᣲ䛢䜙䜜䛶䛔䜛䠖 y ┘ᰝᢸᙜ⪅䛻䜘䜛䠈䜰䝹䝂䝸䝈䝮䜔䝕䞊䝍䜔タィ䝥䝻 䝉䝇䛻ᑐ䛩䜛┘ᰝྍ⬟ᛶ (auditability) y ㈇䛾ᙳ㡪䛾᭱ᑠ䛸ሗ࿌ (minimization and reporting negative impacts) y 䝖䝺䞊䝗䜸䝣 (trade-offs) y ⿵ൾ (redress) 䛣䜜䜙䛿䠈 AI 䜢㛤Ⓨ䛩䜛ே䜔⤌⧊䛜ᯝ䛯䛩䜉䛝✀䚻䛾ㄝ᫂ 䛸䛧䛶ิᣲ䛥䜜䛶䛔䜛䛜䠈ᮏㄽᩥ䛷䛿䠈 AI ⮬య䛻ㄝ᫂㈐௵䜢ᣢ 䛯䛫䜛䛣䛸䜢⪃䛘䜛䠊䛣䛾䛯䜑䠈ㄝ᫂䜢ᐇ⾜䛩䜛䛾䛿 AI ⮬య䛷 䛒䜛䠊ᮏㄽᩥ䛾ᚋ༙䛷ᥦ䛩䜛ື⏬᥎⸀ AI 䜶䞊䝆䜵䞁䝖䛷䛿䠈 ᥎⸀䛧䛯ື⏬䛜㐺ษ䛷䛒䛳䛯ሙྜ䠈䜶䞊䝆䜵䞁䝖䛿䛺䛬䛭䛾 䜘䛖䛺ែ䜢ᣍ䛔䛯䛛䠈Ⓨ㜵Ṇ䛾䛯䜑䛻䛹䛖䛩䜛䛛䜢⮬䜙ㄝ᫂ 䛩䜛䠊 Ẹἲ䠓䠌䠕᮲䛷䛿䠈䛂ᨾពཪ䛿㐣ኻ䛻䜘䛳䛶ே䛾ᶒཪ䛿 ἲᚊୖಖㆤ䛥䜜䜛┈䜢ᐖ䛧䛯⪅䛿䠈䛣䜜䛻䜘䛳䛶⏕䛨䛯ᦆ ᐖ䜢㈺ൾ䛩䜛㈐௵䜢㈇䛖䠊䛃 䛸つᐃ䛧䛶䛔䜛䠊䛣䜜䛿 accountability 䠄ㄝ᫂㈐௵䠅䛾୍䛴䜢つᐃ䛧䛶䛔䜛䛸⪃䛘䜙䜜䜛䠊 ୍⯡ⓗ䛻䛿䠈ㄝ᫂㈐௵䛾䛸䜚᪉䛸䛧䛶䛿䠈ㅰ⨥䛩䜛䠋ฮ⨩䜢 ཷ䛡䜛䠋ᶒ䜔ᆅ䜢ᡭᨺ䛩䠋㈺ൾ䛩䜛➼䛜䛒䜚䛘䜛䠊ᮏㄽᩥ 䛾ᚋ༙䛷ᥦ䛩䜛ື⏬᥎⸀ AI 䜶䞊䝆䜵䞁䝖䛷䛿䠈䛣䛾䛖䛱䛾 䛂ㅰ⨥䛩䜛䛃䛣䛸䜢ᐇ䛧䛯䠊ᶒ䜔ᆅ䜢ᡭᨺ䛩䛣䛸䛾୍✀䛸䛧 䛶䠈᥎⸀䜢᥍䛘䜛䛣䛸䜒䛒䜚䛘䜛䠊 䛂ฮ⨩䜢ཷ䛡䜛䛃䛣䛸䛜 AI 䛾㈐௵䛾䛸䜚᪉䛸䛧䛶䛒䜚ᚓ䜛䛛䛻 䛴䛔䛶䛾㆟ㄽ䜒⯆῝䛔䛜䠈ᮏㄽᩥ䛷䛿䛣䜜௨ୖ䛿ゐ䜜䛺䛔䠊 AI 䛜䛂㈺ൾ䛩䜛䛃䛣䛸䛿䠈 AI ྥ䛡䛾㈺ൾ㈐௵ಖ㝤 (liability insurance) 䠄䛯䛸䛘䜀 [ ᪥ᮏ䝻䝪䝑䝖Ꮫㄅ≉㞟 20] 䠅䛾ᑟධ䛻䜘䜚 ᐇ⌧䛷䛝䜛ྍ⬟ᛶ䛜䛒䜛䛰䜝䛖䠊䛯䛰䛧䠈ಖ㝤ᩱ䛾ᨭᡶ䛔䜢 AI ⮬య䛜䛧䛺䛔ሙྜ䛻 AI 䛜㈺ൾ䛧䛯䛸ゝ䛖䛣䛸䛿㐺ษ䛷䛺䛔䜘䛖 ࿊ཙʁˡښැښࢤࠪښۢনϴڰௌ ښܵથңָָӅܵՌָݜڂՌๅָߊ ϱνϧέτΡϔஎݜڂ࣪KDWDQDND#LLLVNLWDFMS
通过仅使用蛋白质和化合物的一维结构进行分析,可以极快地进行计算(比对接模拟快 2,000 倍以上),同时达到与使用现有三维结构进行分析相同的精度。
1.研究背景2.研究目的3. 4.关于发射/接收模块GaN* 开关测量结果 5. GaN收发器模块6的测量结果。关于研究成果 7.摘要
摘要:现代食品技术研究已经研究了降低食物中生物胺浓度的可能方法,从而增强并确保食品安全。应用可以代谢生物胺的辅助培养物是达到后者目标的潜在方法。因此,本研究的目的是研究可以使用枯草芽孢杆菌DEPE IB1与Gouda-type奶酪分离出的食物中生物胺浓度降低(组胺,酪胺,苯甲胺,presscine和cadaverine)的关键因素。在有氧和厌氧条件下,培养温度(8℃,23℃和30℃)和培养基(5.0、6.0、7.0和8.0)的初始pH值的综合作用导致测试的生物基因胺在培养时间(另一个因素测试)的降低。在补充有生物胺的培养基中培养了枯草芽孢杆菌(体外),并使用配备有紫外探测器的高性能液相色谱法检测到它们的降解。枯草芽孢杆菌Depe IB1的生物胺降解过程受到培养温度以及培养基的初始pH值的显着影响(p <0.05)。在培养结束时,所有监测的生物胺的浓度显着降低了65-85%(p <0.05)。因此,该菌株可用于预防目的,并有助于增强食品安全性。
愿耶和华的荣耀永远长存;愿耶和华喜悦自己所作的!(诗篇 104:31)亲爱的基督姐妹兄弟们,当我们开始 2025 年禧年时,我们为救世主的恩赐而欢欣鼓舞,他的诞生是为了向世界揭示上帝无限的爱。在我们日历年的早些时候,主显节庆祝这位伯利恒圣婴的显现,他不仅是以色列的弥赛亚,也是给全人类的礼物。主显节的传统弥撒和时辰礼仪文本庆祝上帝的拯救行动对所有造物产生影响。在东方三博士崇拜的中心故事中,异教徒遇到上帝在圣婴耶稣身上显现的故事,这些研究天空的占星家受到天上一颗星星的指引。主显节的主题在耶稣受洗时的显现中得到了延续,我们看到肉身中的上帝沐浴在约旦河中,他通过这样做使河水变得神圣。基督的诞生和显现使一切造物的壮丽焕然一新。因此,在 2025 年第一天这个特殊的圣诞节期间,我们发布天主教列克星敦教区的《愿祢受赞颂》行动计划是恰当的。该行动计划可以作为今年禧年教区新年决议的一种。我们可能还记得,在《利未记》中关于禧年的圣经立法中,甚至土地也要休耕,让其休息和恢复活力。人们担心不要给土地带来过重的负担,耗尽其肥沃的资源。在宣布我们今年的禧年主题为“希望不会令人失望”的法令中,教皇方济各提醒我们,宽恕和免除债务始终是禧年“恩惠之年”的一部分,正如耶稣本人在拿撒勒犹太教堂的第一次布道中所宣布的那样。教皇告诉我们,我们还可以考虑对那些牺牲了大量自然资源却未能分享其消费给某些国家带来的好处的国家负有“生态债务”。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.