本文描述并回顾了解决人机界面挑战的研究和潜在解决方案,使单个操作员能够通过一个界面控制多架无人机 (UAV)。作为一个系统,这也被称为多机器人系统 (MRS)。MRS 应用于多个领域,如环境监测 [1]、搜索和救援 [2, 3]、安全 [4]、机器人配送的监督控制以及探索性医疗保健中的微型和纳米机器人群 [5]。单个操作员同时控制多个机器人的优势(称为一对多关系)是改善资源分配、时间成本、稳健性和现实世界任务的其他方面 [6]。然而,由于单个操作员的认知工作量增加,增加机器人数量并不一定会提高系统性能 [7]。早期模型描述了单个操作员使用基于忽视容忍度的扇出控制的机器人数量、当操作员忽视机器人时机器人的效率如何随时间下降,以及交互时间、任务切换、建立上下文、计划和将计划传达给机器人所需的时间 [8]。该模型已扩展到包括等待时间和性能指标,以模拟给定任务约束的扇出水平 [9]。
电子电路和系统中的非理想效应:噪声;设备噪声,外部噪声,CMRR,PSRR,混合a/d。失真;非线性,动态范围,饱和度。对参数变化的稳定性和性能敏感性。一些简单的设计,用于稳定性和性能。设计优化。功率供应分布和解耦。混合模拟/数字系统设计,包括接地和屏蔽。SPICE中的设备建模。 数据表解释。 模拟和数字电路和系统组件的设计:非线性电路;振荡器,PLL,乘数,AGC,施密特触发。 滤波器设计简介;活动过滤器;运算放大器。 传感器和执行器,PTAT;仪器放大器和信号调节。 数字CMOS门的低级设计和优化。 门延迟,功率耗散,噪音余量,扇出。 集成电路设计简介。对应,电源,可靠性,UC看门狗。SPICE中的设备建模。数据表解释。模拟和数字电路和系统组件的设计:非线性电路;振荡器,PLL,乘数,AGC,施密特触发。滤波器设计简介;活动过滤器;运算放大器。传感器和执行器,PTAT;仪器放大器和信号调节。数字CMOS门的低级设计和优化。门延迟,功率耗散,噪音余量,扇出。集成电路设计简介。对应,电源,可靠性,UC看门狗。
在减小移动设备外形尺寸和增加功能集成度方面,晶圆级封装 (WLP) 是一种极具吸引力的封装解决方案,与标准球栅阵列 (BGA) 封装相比具有许多优势。随着各种扇出型 WLP (FOWLP) 的进步,与扇入型 WLP 相比,它是一种更优化、更有前景的解决方案,因为它可以在设计更多输入/输出 (I/O) 数量、多芯片、异构集成和三维 (3D) 系统级封装 (SiP) 方面提供更大的灵活性。嵌入式晶圆级球栅阵列 (eWLB) 是一种扇出型 WLP,可实现需要更小外形尺寸、出色散热和薄型封装轮廓的应用,因为它有可能以经过验证的制造能力和生产良率发展为各种配置。eWLB 是一种关键的先进封装,因为它具有更高的 I/O 密度、工艺灵活性和集成能力。它有助于在一个封装中垂直和水平地集成多个芯片,而无需使用基板。结构设计和材料选择对工艺良率和长期可靠性的影响越来越重要,因此有必要全面研究影响可靠性的关键设计因素。
概述 GM50301 是一款 2.5GHz 、 10 路输出差分扇出缓冲 器,用于高频、低抖动时钟 / 数据分配和电平转换。输 入时钟可以从两个通用输入或一个晶体输入中选择。 所选定的输入时钟被分配到三组输出,两组包含 5 个 差分的输出和 1 个 LVCMOS 输出。两个差分输出 组均可被独立配置为 LVPECL 、 LVDS 或 HCSL 驱 动器,或者被禁用。 LVCMOS 输出具有用于在启用 或禁用时实现无短脉冲运行的同步使能输入。 GM50301 采用一个 3.3V 内核电源和 3 个独立的 3.3V 或 2.5V 输出电源供电。 GM50301 具有高性能、高功效而且用途广泛,使其 成为替代固定输出缓冲器器件的理想选择,同时增加 系统中的时序裕度。 GM50301 在内核和输出电源域之间没有电源时序要 求。 功能框图
对于高性能计算,希望从整体SOC中分解缓存存储器,并通过异源集成技术重新整合它。将缓存从整体SOC中重新定位会导致降低晚期硅死模尺寸,从而导致较高的产量和较低的成本。在这项研究中,我们评估了使用DECA模制的M-Series™嵌入式缓存扇出溶液之间高端3D硅互连解决方案和低端基板溶液之间差距的方法。deca的M系列芯片首先面对FOWLP平面结构是一个理想的平台,用于构建嵌入式插入器,用于处理器芯片,缓存内存和深沟槽电容器的异质集成。deca的自适应模式®允许扩展到处理器chiplet和缓存内存之间的高密度互连。考虑了嵌入式缓存插波器的三种不同配置。垂直堆叠的面对面配置最小化处理器和高速缓存之间的互连长度,而横向配置为铜堆积的铜堆积提供了铜的互连,从而可以进一步缩放互连间距。这两种配置都有其特定的好处和缺点,这些作品在这项工作中详细描述了。关键词自适应图案,嵌入式缓存插入器,扇出晶圆级包装,异质集成,高性能计算,M系列
摘要 逻辑、存储器、光子、模拟和其他增值功能的异构集成是提高电子系统效率、性能和带宽同时有助于降低总体制造成本的一种方法。为充分利用异构集成的优势,设计人员需要更精细分辨率的重分布层图案和更大的封装尺寸,以最大限度地提高系统级封装集成的可能性。大封装电子系统的生产非常适合面板级封装 (PLP),而在整个矩形面板上实现均匀的亚微米图案化是一项关键的光刻挑战。为应对这一挑战,佳能开发出第一台能够在 500 毫米面板上实现亚微米分辨率的光刻曝光系统或步进机。步进机具有面板处理系统,可处理最大尺寸为 515 mm x 515 mm 的面板,还配备了宽视场投影镜头,其最大数值孔径为 0.24,像场为 52 mm x 68 mm。本文将报告使用面板步进机的亚微米 PLP 工艺的评估结果,并介绍高分辨率 PLP 工艺的挑战,包括翘曲面板处理。将报告覆铜板 (CCL) 基板的工艺结果,包括图案均匀性、相邻镜头拼接精度和包含扇出工艺中常见的芯片放置误差的基板上的叠加精度。关键词先进封装、扇出、面板级封装、步进机、亚微米、光刻、系统级封装
车博士曾 4 次获得最佳国际会议论文奖 (EPTC2003 、 EPTC2013 、 Itherm2006 、 ICEPT2006) 。 他合着了一本书,并在先进微电子封装领域的同行期刊和会议论文集上发表了 170 多篇技术论文。他拥有 11 项 已获授权或正在申请的美国专利。 他的研究兴趣包括先进封装的可靠性设计、铜线键合、硅通孔 (TSV) 技术、扇出型晶圆级 / 皮肤级封装、有限元 建模与仿真、微电子封装材料特性、物理驱动和数据驱动的机器学习方法,用于先进封装技术的快速技术风险评 估。 车博士担任 35 多个国际科学期刊的同行评审员,例如 J. of Materials Science 、 J. of Electronic Materials 、 J.Materials and Design 、 Materials characterization 、 Microelectronics Reliability 、 IEEE Trans.on CPMT 、 IEEE Trans.on DMR 、 International J. of Fatigue 、 J. of Alloys and Compounds 、 J. of Micromechanics and Microengineering 等。 车博士连续四年( 2020 年至 2023 年)被斯坦福大学评为全球前 2% 科学家。 他是 IEEE 高级会员。
随着行业向超摩尔时代迈进,下一代封装技术也朝着高密度芯片或芯片分割封装集成方向发展。尤其是对于高性能计算应用,先进封装技术通过硅或有机中介层集成多个芯片芯片,从而提供经济效益。有机中介层是芯片到芯片互连的替代接口之一。FO-MCM 以同质封装集成概念应用于芯片集成和 ASIC 到 Serdes 芯片集成而闻名。由于人工智能计算和 HPC 市场增长的推动,将封装的 HBM 集成到封装模块中作为异构集成封装 (HIP) 的趋势已经形成。近年来,两种平台(以硅中介层为基础的 2.5D 和以部分桥接芯片为互连介质的 FO-EB)已投放市场。还讨论了采用纯有机中介层的 FO-MCM 应用于异构集成领域的可行性。全有机中介层可以为 HPC 产品提供多个 RDL 层和线路/空间的灵活设计。本研究旨在解决采用纯有机中介层的 FO-MCM 平台实现集成 HBM 的异质封装。FO-MCM 中的芯片最后方法具有控制 RDL 质量和采用“已知良好的 RDL”以节省顶层芯片成本的优势。扇出型 RDL 配置为 4 层,最小 L/S 为 2/2um。在验证过程中,基于模拟分析,通过材料和底部填充选择优化了翘曲和应力。组装结果表明,翘曲和可靠性验证通过了 MSL4、TCT700x、uHAST96 和 HTST1000hrs 条件。关键词 扇出型 MCM;芯片最后;异质集成;芯片分区;高性能计算;HBM
双曲线无线电定位:该概念是在第二次世界大战期间发展起来的,其基础是测量已知位置的(主从)发射器对广播的信号的相位或到达时间的差异。由差异产生的定位线 (LOP) 是双曲线。两条双曲线(来自两对发射器)的交点决定了导航员的位置。双曲线无线电定位系统的精度在空间上是可变的,取决于三个因素:LOP 测量不确定性、双曲线 LOP 的扇出(扩展因子)(取决于主从之间与基线的距离)以及 LOP 之间的相交角(见图 1)。表 1 总结了用于收集 GEBCO 数据的双曲线系统的特征。
高级LSI包装的最新趋势:纺织品科学和技术纤维纤维创新培养基的应用简介,新生大学,3-15-1 TOKIDA,UEDA,NAGANO 386-8567,日本 *ueno-t@shinshu-t@shinshu-u.ac.jp for for for for for for hy for高lse ands for高lsi,2D软件包也称为MCM(多芯片模块),Fowlp(扇出晶圆级包装),该包装已应用于智能手机,2.5D包装,使用硅芯片作为插入器,芯片嵌入式包装,以补偿2D和2.5D包装的缺点,以及最近引起了重大关注的3D包装。虽然通过缩小关键特征大小和扩展规则来提高性能变得越来越困难,但提议的chiplet概念使软件包技术在进一步提高LSIS的性能方面发挥了作用。关键字:MCM(多芯片模块),FOWLP(扇出晶圆级包装),2.5D包装,芯片嵌入式包装,3D包装,chiplets,chiplets,光敏材料1。引言数字化协会通过增强LSI(大规模集成)性能的大大提高。此外,数据科学的增长,数据通信的扩展,人工智能(人工智能),物联网(物联网),绿色技术,自动驾驶将需要更高的绩效计算机。这些对支持上述技术的更高绩效LSI的需求正在继续。LSI通过在LSI芯片和缩放定律中的关键特征大小的收缩来提高性能的历史。目前,每芯片晶体管的数量超过100亿,接近1000亿。这是通过图案大小收缩光刻技术实现的,而且努力正在继续。但是,据说所谓的摩尔定律通过增加组件密度来降低成本,从而开始放慢速度。较小特征大小的光刻的持续发展变得越来越昂贵,并且通过增加的最先进设备的成本(例如EUV曝光工具),复杂的过程,诸如多模式的过程以及新晶体管结构的复杂性(例如Fin Finfet)(Fin Field-field-