全球有超过5500万人受痴呆症影响,每年有近1000万例新病例,阿尔茨海默氏病是一种普遍且具有挑战性的神经退行性疾病。尽管对阿尔茨海默氏病检测的机器学习技术取得了重大进步,但深度学习模型的广泛采用引起了人们对其解释性的关注。在在线手写分析的深度学习模型中缺乏解释性,这在阿尔茨海默氏病检测的背景下是文献中的一个关键差距。本文通过解释应用于多变量时间序列数据的卷积神经网络的预测来解决这一挑战,该预测是由在图形平板电脑上手写的连续循环系列相关的在线手写数据生成的。我们的解释性方法揭示了健康个体和被诊断为阿尔茨海默氏症的人的不同运动行为特征。健康受试者表现出一致,平稳的运动,而阿尔茨海默氏症患者的表现出了不稳定的模式,其标记为突然停止和方向变化。这强调了解释性在将复杂模型转化为临床相关见解中的关键作用。我们的研究有助于提高早期诊断,为参与患者护理和干预策略的利益相关者提供了重要的可靠见解。我们的工作弥合了机器学习预测与临床见解之间的差距,从而促进了对阿尔茨海默氏病评估的高级模型的更有效和可理解的应用。
摘要 - 在这项研究中,我们探讨了使用频谱图代表了用于评估神经退化性疾病的手写信号,包括42个健康对照(CTL),35名患有帕金森氏病的受试者(PD),21例患有阿尔茨海默氏病(AD)和15例患有帕克森病的疾病模仿(PDM)。我们使用基于多通道的固定尺寸和基于框架的频谱图应用了CNN和CNN-BLSTM模型进行二进制分类。我们的结果表明,手写任务和频谱渠道组合会显着影响分类性能。AD与CTL的F1得分最高(89.8%),而PD与CTL达到74.5%,PD与PDM的得分为77.97%。CNN始终优于CNN-BlstM。测试了不同的滑动窗口长度,以构建基于框架的频谱图。一个1秒的窗口最适合AD,更长的Windows改进的PD分类,并且窗口长度对PD与PDM的影响很小。索引项 - 手写,神经退行性疾病,固定尺寸频谱图,基于框架的频谱图,通道。
5. 假设一个项目(未显示)使用两个串联的锂电池。我们希望在电池放电时分别监测它们的电压。Arduino 是低成本的微处理器板,深受业余爱好者和 DIY 社区的欢迎。Arduino 具有模拟连接,即可用于测量电压的“引脚”(使用 Arduino 内的模拟数字转换器)。似乎我们可以通过将较低极性连接到接地引脚并将较高极性连接到模拟引脚来监测电池。事实上,对于单个电池,在此引脚处测得的电压正是我们想要的。但是,假设我们将这些串联电池中每个电池的正极连接到两个单独的模拟引脚,并将每个电池的负极连接到地,如下图所示。
包括深度学习在内的人工智能技术在所有领域都起着重要作用,并且与技术的进步一致。手写数字识别是计算机视觉领域的重要问题,该领域用于诸如光学角色识别和手写数字之类的广泛应用程序中。在当前的研究中,我们描述了一种独特的深度学习技术,该技术使用具有更好归一化算法和调整后的超参数的卷积神经网络(CNN)框架,以提高效率并推广。与传统技术对比,我们的方法集中于通过使用可调节的放弃率和创新的汇总程序来最大程度地拟合过度拟合,从而使手写数字分类的准确性更高。经过大量研究,推荐的方法获得了99.03%的出色分类精度,证明了其识别手写数字中复杂结构的能力。通过对召回,准确性,F1分数以及混淆矩阵评估在内的措施的完整审查,可以增强该方法的有用性,这些措施显示了所有数字类别的改进。。调查结果突出了所使用的创新概念布局和优化方法,这代表了数字识别领域的实质性飞跃。
从邮政服务到自动化表单处理的应用程序。本文介绍了用于HCR的各种方法的比较研究,强调了传统和深度学习方法。传统技术,例如K-Nearest邻居(K-NN),支持向量机(SVM)和人工神经网络(ANN),将其与现代深度学习体系结构(如卷积神经网络(CNN))进行了比较。该研究研究了这些方法的效率,准确性和复杂性,重点是在识别不同数据集中手写字符时的性能。关键挑战,例如在图像中的手写样式,噪声和扭曲的变化。此外,要提高识别率,强调预处理技术的重要性,例如归一化,二进制和提取特征提取。研究结果表明,尽管传统方法对于具有最小的变化的较小数据集有效,但深度学习模型,尤其是CNN,在大型复杂数据集上的准确性和概括方面表现跑得跑得跑得跑得跑得跑得卓越。本文通过讨论将多个模型和使用混合技术相结合的未来潜力来进一步改进HCR系统的结合。
在外汇和货币市场的背景下,抽象的金融市场动态通过各种变化和转型进行了变化,包括整合人工智能(AI)等创新。金融市场策略(包括对冲和定价策略通过AI的实施)能够影响货币,信贷和金融衍生品市场,以防止市场敞口的风险。AI技术是一种创新的整合,旨在通过其算法和预测模型来改善外汇,信用风险,货币市场和金融衍生品策略。AI的预测性和自动化功能是其有益和有用的方面之一,这些方面有助于通过降低错误的风险,增强对市场风险管理的生产能力,从而降低错误的风险以及提高错误的生产能力,从而有助于创新的金融衍生品和对信贷和货币市场的风险管理。关键字:金融衍生品,对冲,货币市场,外汇,汇率确定,货币衍生品,人工智能和衍生品,翻译风险,经济暴露。
通过让学生手工编写课程来教授计算机科学(CS)具有关键的教学优势:它可以集中学习,并且与使用智能支持工具或“只是尝试”的整体开发环境(IDE)相比,需要仔细思考。笔和纸的熟悉环境也减少了没有以前没有计算机经验的学生的认知负担,而这些计算机的基本用法可能会令人生畏。最后,这种教学方法为获得计算机访问权限的学生打开了学习机会。但是,一个关键的障碍是目前缺乏用于使用手写程序和运行手写程序的教学方法和支持软件。手写代码的光学特征识别(OCR)具有挑战性:较小的OCR错误,可能是由于各种手写样式,很容易使代码不运行,并且识别凹痕对于像Python这样的语言至关重要,但由于不一致的水平间距很难在手写上进行。我们的方法是两种创新的方法。第一个将OCR与凹痕识别模块和一种用于后官方误差校正的语言模型相结合,而无需引入幻觉。据我们所知,这种方法在手写代码识别中超过了所有现有的系统。,由于对学生计划的逻辑修复程序的最小幻觉,它将误差从艺术状况减少到5%。第二种方法利用了多模式模型来识别端到端时尚中的手写程序。我们发布了手写程序和代码的数据集,以支持未来的研究1。我们希望这项贡献能够刺激进一步的教学研究,并有助于使CS教育易于获得。
摘要 - 本文介绍了一项有关使用深度学习技术的手写签名验证的全面研究。本研究旨在应对离线签名验证的挑战,在此任务是自动区分真正的签名与伪造的挑战。所提出的方法利用了最新的深度学习模型,包括Mobilenet,Resnet50,InceptionV3和VGG19与Yolov5结合使用,以实现高精度分类和可靠的伪造检测。在多个基准数据集上评估了该系统,包括Kaggle签名,Cedar,ICDAR和SIGCOMP,在各种现实世界中展示了其有效性和鲁棒性。所提出的方法包括数据预处理技术,以增强输入手写签名图像的质量,从而使模型能够捕获基本功能和模式以进行准确的分类。结果表明,与现有的最新方法相比,提出的方法的优越性在识别真正的特征并准确检测伪造方面达到了出色的准确率(89.8%)。此外,该模型对变化数据集大小和配置的适应性进一步支持其在签名验证任务中实际部署的潜力。这项研究有助于脱机签名验证技术的发展,为确保各种应用程序中手写签名的安全性和真实性提供了可靠,有效的解决方案。
在数字化时代,手写文档识别具有多种应用,例如历史信息保存,邮政地址识别等。对无价文化宝藏的保护和分析在很大程度上取决于历史文档中手写的数字字符串识别。认可的主要挑战是写作风格的变化,噪声,扭曲和有限的数据。本文提出了一种新的方法,可以克服包含数字字符串的复杂,褪色和旧手写文档的困难。目标是创建一个可靠有效的系统,该系统自动识别古代手稿的数字字符串,有助于数字化记录。因此,本文提出了一个强大的视觉变压器框架,以识别手写数字字符串,而不会从较小数据集的未清洗图像中分割数字。所提出的方法是一个四步过程,包括预处理,通过象征化提取特征提取,使用视觉变压器的注意机制识别以及使用光束搜索解码器进行结果解码。将提出方法的性能与由卷积神经网络和长期记忆(CNN-LSTM)组成的混合方法进行比较。所提出的方法达到了56%的单词准确性,损失在更少的时间内低于0.6。结果表明,所提出的模型是一个快速学习者,可以在预期更少的时间内的实时场景中使用。这项研究的结果会影响邮政服务的数字化。在本文中还借助局部可解释的模型 - 不合Snostic解释(LIME)技术讨论了所提出的深度学习模型绩效解释。通过为实时应用程序提供软件即服务(SAAS)来概括所提出的方法的概括,以作为未来的研究方向。